1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
//! This crate implements a structure that can be used as a generic array type.
//!
//! **Requires minumum Rust version of 1.65.0
//!
//! [Documentation on GH Pages](https://fizyk20.github.io/generic-array/generic_array/)
//! may be required to view certain types on foreign crates.
//!
//! Before Rust 1.51, arrays `[T; N]` were problematic in that they couldn't be
//! generic with respect to the length `N`, so this wouldn't work:
//!
//! ```compile_fail
//! struct Foo<N> {
//!     data: [i32; N],
//! }
//! ```
//!
//! Since 1.51, the below syntax is valid:
//!
//! ```rust
//! struct Foo<const N: usize> {
//!     data: [i32; N],
//! }
//! ```
//!
//! However, the const-generics we have as of writing this are still the minimum-viable product (`min_const_generics`), so many situations still result in errors, such as this example:
//!
//! ```compile_fail
//! # struct Foo<const N: usize> {
//! #   data: [i32; N],
//! # }
//! trait Bar {
//!     const LEN: usize;
//!
//!     // Error: cannot perform const operation using `Self`
//!     fn bar(&self) -> Foo<{ Self::LEN }>;
//! }
//! ```
//!
//! **generic-array** defines a new trait [`ArrayLength`] and a struct [`GenericArray<T, N: ArrayLength>`](GenericArray),
//! which lets the above be implemented as:
//!
//! ```rust
//! use generic_array::{GenericArray, ArrayLength};
//!
//! struct Foo<N: ArrayLength> {
//!     data: GenericArray<i32, N>
//! }
//!
//! trait Bar {
//!     type LEN: ArrayLength;
//!     fn bar(&self) -> Foo<Self::LEN>;
//! }
//! ```
//!
//! The [`ArrayLength`] trait is implemented for
//! [unsigned integer types](typenum::Unsigned) from
//! [typenum]. For example, [`GenericArray<T, U5>`] would work almost like `[T; 5]`:
//!
//! ```rust
//! # use generic_array::{ArrayLength, GenericArray};
//! use generic_array::typenum::U5;
//!
//! struct Foo<T, N: ArrayLength> {
//!     data: GenericArray<T, N>
//! }
//!
//! let foo = Foo::<i32, U5> { data: GenericArray::default() };
//! ```
//!
//! The `arr!` macro is provided to allow easier creation of literal arrays, as shown below:
//!
//! ```rust
//! # use generic_array::arr;
//! let array = arr![1, 2, 3];
//! //  array: GenericArray<i32, typenum::U3>
//! assert_eq!(array[2], 3);
//! ```
//! ## Feature flags
//!
//! ```toml
//! [dependencies.generic-array]
//! features = [
//!     "more_lengths",  # Expands From/Into implementation for more array lengths
//!     "serde",         # Serialize/Deserialize implementation
//!     "zeroize",       # Zeroize implementation for setting array elements to zero
//!     "const-default", # Compile-time const default value support via trait
//!     "alloc",         # Enables From/TryFrom implementations between GenericArray and Vec<T>/Box<[T]>
//!     "faster-hex"     # Enables internal use of the `faster-hex` crate for faster hex encoding via SIMD
//! ]
//! ```

#![deny(missing_docs)]
#![deny(meta_variable_misuse)]
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]

pub extern crate typenum;

#[doc(hidden)]
#[cfg(feature = "alloc")]
pub extern crate alloc;

mod hex;
mod impls;
mod iter;

#[cfg(feature = "alloc")]
mod impl_alloc;

#[cfg(feature = "const-default")]
mod impl_const_default;

#[cfg(feature = "serde")]
mod impl_serde;

#[cfg(feature = "zeroize")]
mod impl_zeroize;

use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::{mem, ptr, slice};
use typenum::bit::{B0, B1};
use typenum::generic_const_mappings::{Const, ToUInt};
use typenum::uint::{UInt, UTerm, Unsigned};

#[doc(hidden)]
#[cfg_attr(test, macro_use)]
pub mod arr;

pub mod functional;
pub mod sequence;

mod internal;
use internal::{ArrayConsumer, IntrusiveArrayBuilder, Sealed};

// re-export to allow doc_auto_cfg to handle it
#[cfg(feature = "internals")]
pub mod internals {
    //! Very unsafe internal functionality.
    //!
    //! These are used internally for building and consuming generic arrays. When used correctly,
    //! they can ensure elements are correctly dropped if something panics while using them.
    //!
    //! The API of these is not guarenteed to be stable, as they are not intended for general use.

    pub use crate::internal::{ArrayBuilder, ArrayConsumer, IntrusiveArrayBuilder};
}

use self::functional::*;
use self::sequence::*;

pub use self::iter::GenericArrayIter;

/// Trait used to define the number of elements in a [`GenericArray`].
///
/// `ArrayLength` is a superset of [`typenum::Unsigned`].
///
/// Consider `N: ArrayLength` to be equivalent to `const N: usize`
///
/// ```
/// # use generic_array::{GenericArray, ArrayLength};
/// fn foo<N: ArrayLength>(arr: GenericArray<i32, N>) -> i32 {
///     arr.iter().sum()
/// }
/// ```
/// is equivalent to:
/// ```
/// fn foo<const N: usize>(arr: [i32; N]) -> i32 {
///     arr.iter().sum()
/// }
/// ```
///
/// # Safety
///
/// This trait is effectively sealed due to only being allowed on [`Unsigned`] types,
/// and therefore cannot be implemented in user code.
pub unsafe trait ArrayLength: Unsigned + 'static {
    /// Associated type representing the underlying contiguous memory
    /// that constitutes an array with the given number of elements.
    ///
    /// This is an implementation detail, but is required to be public in cases where certain attributes
    /// of the inner type of [`GenericArray`] cannot be proven, such as [`Copy`] bounds.
    ///
    /// [`Copy`] example:
    /// ```
    /// # use generic_array::{GenericArray, ArrayLength};
    /// struct MyType<N: ArrayLength> {
    ///     data: GenericArray<f32, N>,
    /// }
    ///
    /// impl<N: ArrayLength> Clone for MyType<N> where N::ArrayType<f32>: Copy {
    ///     fn clone(&self) -> Self { MyType { ..*self } }
    /// }
    ///
    /// impl<N: ArrayLength> Copy for MyType<N> where N::ArrayType<f32>: Copy {}
    /// ```
    ///
    /// Alternatively, using the entire `GenericArray<f32, N>` type as the bounds works:
    /// ```ignore
    /// where GenericArray<f32, N>: Copy
    /// ```
    type ArrayType<T>: Sealed;
}

unsafe impl ArrayLength for UTerm {
    #[doc(hidden)]
    type ArrayType<T> = [T; 0];
}

/// Implemented for types which can have an associated [`ArrayLength`],
/// such as [`Const<N>`] for use with const-generics.
///
/// ```
/// use generic_array::{GenericArray, IntoArrayLength, ConstArrayLength, typenum::Const};
///
/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, ConstArrayLength<N>>
/// where
///     Const<N>: IntoArrayLength,
/// {
///     let ga = GenericArray::from(value);
///     // do stuff
///     ga
/// }
/// ```
///
/// This is mostly to simplify the `where` bounds, equivalent to:
///
/// ```
/// use generic_array::{GenericArray, ArrayLength, typenum::{Const, U, ToUInt}};
///
/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, U<N>>
/// where
///     Const<N>: ToUInt,
///     U<N>: ArrayLength,
/// {
///     let ga = GenericArray::from(value);
///     // do stuff
///     ga
/// }
/// ```
pub trait IntoArrayLength {
    /// The associated `ArrayLength`
    type ArrayLength: ArrayLength;
}

impl<const N: usize> IntoArrayLength for Const<N>
where
    Const<N>: ToUInt,
    typenum::U<N>: ArrayLength,
{
    type ArrayLength = typenum::U<N>;
}

impl<N> IntoArrayLength for N
where
    N: ArrayLength,
{
    type ArrayLength = Self;
}

/// Associated [`ArrayLength`] for one [`Const<N>`]
///
/// See [`IntoArrayLength`] for more information.
pub type ConstArrayLength<const N: usize> = <Const<N> as IntoArrayLength>::ArrayLength;

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplEven<T, U> {
    parent1: U,
    parent2: U,
    _marker: PhantomData<T>,
}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplOdd<T, U> {
    parent1: U,
    parent2: U,
    data: T,
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
    #[inline(always)]
    fn clone(&self) -> GenericArrayImplEven<T, U> {
        // Clone is never called on the GenericArrayImpl types,
        // as we use `self.map(clone)` elsewhere. This helps avoid
        // extra codegen for recursive clones when they are never used.
        unsafe { core::hint::unreachable_unchecked() }
    }
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
    #[inline(always)]
    fn clone(&self) -> GenericArrayImplOdd<T, U> {
        unsafe { core::hint::unreachable_unchecked() }
    }
}

// Even if Clone is never used, they can still be byte-copyable.
impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}

impl<T, U> Sealed for GenericArrayImplEven<T, U> {}
impl<T, U> Sealed for GenericArrayImplOdd<T, U> {}

unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B0> {
    #[doc(hidden)]
    type ArrayType<T> = GenericArrayImplEven<T, N::ArrayType<T>>;
}

unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B1> {
    #[doc(hidden)]
    type ArrayType<T> = GenericArrayImplOdd<T, N::ArrayType<T>>;
}

/// Struct representing a generic array - `GenericArray<T, N>` works like `[T; N]`
///
/// For how to implement [`Copy`] on structs using a generic-length `GenericArray` internally, see
/// the docs for [`ArrayLength::ArrayType`].
///
/// # Usage Notes
///
/// ### Intialization
///
/// Initialization of known-length `GenericArray`s can be done via the [`arr![]`](arr!) macro,
/// or [`from_array`](GenericArray::from_array)/[`from_slice`](GenericArray::from_slice).
///
/// For generic arrays of unknown/generic length, several safe methods are included to initialize
/// them, such as the [`GenericSequence::generate`] method:
///
/// ```rust
/// use generic_array::{GenericArray, sequence::GenericSequence, typenum, arr};
///
/// let evens: GenericArray<i32, typenum::U4> =
///            GenericArray::generate(|i: usize| i as i32 * 2);
///
/// assert_eq!(evens, arr![0, 2, 4, 6]);
/// ```
///
/// Furthermore, [`FromIterator`] and [`try_from_iter`](GenericArray::try_from_iter) exist to construct them
/// from iterators, but will panic/fail if not given exactly the correct number of elements.
///
/// ### Utilities
///
/// The [`GenericSequence`], [`FunctionalSequence`], [`Lengthen`], [`Shorten`], [`Split`], and [`Concat`] traits implement
/// some common operations on generic arrays.
///
/// ### Optimizations
///
/// Prefer to use the slice iterators like `.iter()`/`.iter_mut()` rather than by-value [`IntoIterator`]/[`GenericArrayIter`] if you can.
/// Slices optimize better. Using the [`FunctionalSequence`] methods also optimize well.
///
/// # How it works
///
/// The `typenum` crate uses Rust's type system to define binary integers as nested types,
/// and allows for operations which can be applied to those type-numbers, such as `Add`, `Sub`, etc.
///
/// e.g. `6` would be `UInt<UInt<UInt<UTerm, B1>, B1>, B0>`
///
/// `generic-array` uses this nested type to recursively allocate contiguous elements, statically.
/// The [`ArrayLength`] trait is implemented on `UInt<N, B0>`, `UInt<N, B1>` and `UTerm`,
/// which correspond to even, odd and zero numeric values, respectively.
/// Together, these three cover all cases of `Unsigned` integers from `typenum`.
/// For `UInt<N, B0>` and `UInt<N, B1>`, it peels away the highest binary digit and
/// builds up a recursive structure that looks almost like a binary tree.
/// Then, within `GenericArray`, the recursive structure is reinterpreted as a contiguous
/// chunk of memory and allowing access to it as a slice.
///
/// <details>
/// <summary><strong>Expand for internal structure demonstration</strong></summary>
///
/// For example, `GenericArray<T, U6>` more or less expands to (at compile time):
///
/// ```ignore
/// GenericArray {
///     // 6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>
///     data: EvenData {
///         // 3 = UInt<UInt<UTerm, B1>, B1>
///         left: OddData {
///             // 1 = UInt<UTerm, B1>
///             left: OddData {
///                 left: (),  // UTerm
///                 right: (), // UTerm
///                 data: T,   // Element 0
///             },
///             // 1 = UInt<UTerm, B1>
///             right: OddData {
///                 left: (),  // UTerm
///                 right: (), // UTerm
///                 data: T,   // Element 1
///             },
///             data: T        // Element 2
///         },
///         // 3 = UInt<UInt<UTerm, B1>, B1>
///         right: OddData {
///             // 1 = UInt<UTerm, B1>
///             left: OddData {
///                 left: (),  // UTerm
///                 right: (), // UTerm
///                 data: T,   // Element 3
///             },
///             // 1 = UInt<UTerm, B1>
///             right: OddData {
///                 left: (),  // UTerm
///                 right: (), // UTerm
///                 data: T,   // Element 4
///             },
///             data: T        // Element 5
///         }
///     }
/// }
/// ```
///
/// This has the added benefit of only being `log2(N)` deep, which is important for things like `Drop`
/// to avoid stack overflows, since we can't implement `Drop` manually.
///
/// Then, we take the contiguous block of data and cast it to `*const T` or `*mut T` and use it as a slice:
///
/// ```ignore
/// unsafe {
///     slice::from_raw_parts(
///         self as *const GenericArray<T, N> as *const T,
///         <N as Unsigned>::USIZE
///     )
/// }
/// ```
///
/// </details>
#[repr(transparent)]
pub struct GenericArray<T, N: ArrayLength> {
    #[allow(dead_code)] // data is never accessed directly
    data: N::ArrayType<T>,
}

unsafe impl<T: Send, N: ArrayLength> Send for GenericArray<T, N> {}
unsafe impl<T: Sync, N: ArrayLength> Sync for GenericArray<T, N> {}

impl<T, N: ArrayLength> Deref for GenericArray<T, N> {
    type Target = [T];

    #[inline(always)]
    fn deref(&self) -> &[T] {
        GenericArray::as_slice(self)
    }
}

impl<T, N: ArrayLength> DerefMut for GenericArray<T, N> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut [T] {
        GenericArray::as_mut_slice(self)
    }
}

impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a GenericArray<T, N> {
    type IntoIter = slice::Iter<'a, T>;
    type Item = &'a T;

    fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
        self.as_slice().iter()
    }
}

impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a mut GenericArray<T, N> {
    type IntoIter = slice::IterMut<'a, T>;
    type Item = &'a mut T;

    fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
        self.as_mut_slice().iter_mut()
    }
}

impl<T, N: ArrayLength> FromIterator<T> for GenericArray<T, N> {
    /// Create a `GenericArray` from an iterator.
    ///
    /// Will panic if the number of elements is not exactly the array length.
    ///
    /// See [`GenericArray::try_from_iter]` for a fallible alternative.
    #[inline]
    fn from_iter<I>(iter: I) -> GenericArray<T, N>
    where
        I: IntoIterator<Item = T>,
    {
        match Self::try_from_iter(iter) {
            Ok(res) => res,
            Err(_) => from_iter_length_fail(N::USIZE),
        }
    }
}

#[inline(never)]
#[cold]
pub(crate) fn from_iter_length_fail(length: usize) -> ! {
    panic!("GenericArray::from_iter expected {length} items");
}

unsafe impl<T, N: ArrayLength> GenericSequence<T> for GenericArray<T, N>
where
    Self: IntoIterator<Item = T>,
{
    type Length = N;
    type Sequence = Self;

    #[inline(always)]
    fn generate<F>(mut f: F) -> GenericArray<T, N>
    where
        F: FnMut(usize) -> T,
    {
        unsafe {
            let mut array = GenericArray::<T, N>::uninit();
            let mut builder = IntrusiveArrayBuilder::new(&mut array);

            {
                let (builder_iter, position) = builder.iter_position();

                builder_iter.enumerate().for_each(|(i, dst)| {
                    dst.write(f(i));
                    *position += 1;
                });
            }

            builder.finish();
            IntrusiveArrayBuilder::array_assume_init(array)
        }
    }

    #[inline(always)]
    fn inverted_zip<B, U, F>(
        self,
        lhs: GenericArray<B, Self::Length>,
        mut f: F,
    ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
    where
        GenericArray<B, Self::Length>:
            GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
        Self: MappedGenericSequence<T, U>,
        F: FnMut(B, Self::Item) -> U,
    {
        unsafe {
            if mem::needs_drop::<T>() || mem::needs_drop::<B>() {
                let mut left = ArrayConsumer::new(lhs);
                let mut right = ArrayConsumer::new(self);

                let (left_array_iter, left_position) = left.iter_position();
                let (right_array_iter, right_position) = right.iter_position();

                FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
                    let left_value = ptr::read(l);
                    let right_value = ptr::read(r);

                    *left_position += 1;
                    *right_position = *left_position;

                    f(left_value, right_value)
                }))
            } else {
                // Despite neither needing `Drop`, they may not be `Copy`, so be paranoid
                // and avoid anything related to drop anyway. Assume it's moved out on each read.
                let left = ManuallyDrop::new(lhs);
                let right = ManuallyDrop::new(self);

                // Neither right nor left require `Drop` be called, so choose an iterator that's easily optimized
                //
                // Note that because ArrayConsumer checks for `needs_drop` itself, if `f` panics then nothing
                // would have been done about it anyway. Only the other branch needs `ArrayConsumer`
                FromIterator::from_iter(left.iter().zip(right.iter()).map(|(l, r)| {
                    f(ptr::read(l), ptr::read(r)) //
                }))
            }
        }
    }

    #[inline(always)]
    fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
    where
        Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
        Self: MappedGenericSequence<T, U>,
        F: FnMut(Lhs::Item, Self::Item) -> U,
    {
        unsafe {
            if mem::needs_drop::<T>() {
                let mut right = ArrayConsumer::new(self);

                let (right_array_iter, right_position) = right.iter_position();

                FromIterator::from_iter(right_array_iter.zip(lhs).map(|(r, left_value)| {
                    let right_value = ptr::read(r);

                    *right_position += 1;

                    f(left_value, right_value)
                }))
            } else {
                let right = ManuallyDrop::new(self);

                // Similar logic to `inverted_zip`'s no-drop branch
                FromIterator::from_iter(right.iter().zip(lhs).map(|(r, left_value)| {
                    f(left_value, ptr::read(r)) //
                }))
            }
        }
    }
}

impl<T, U, N: ArrayLength> MappedGenericSequence<T, U> for GenericArray<T, N>
where
    GenericArray<U, N>: GenericSequence<U, Length = N>,
{
    type Mapped = GenericArray<U, N>;
}

impl<T, N: ArrayLength> FunctionalSequence<T> for GenericArray<T, N>
where
    Self: GenericSequence<T, Item = T, Length = N>,
{
    #[inline(always)]
    fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
    where
        Self: MappedGenericSequence<T, U>,
        F: FnMut(T) -> U,
    {
        unsafe {
            let mut source = ArrayConsumer::new(self);

            let (array_iter, position) = source.iter_position();

            FromIterator::from_iter(array_iter.map(|src| {
                let value = ptr::read(src);

                *position += 1;

                f(value)
            }))
        }
    }

    #[inline(always)]
    fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
    where
        Self: MappedGenericSequence<T, U>,
        Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
        Rhs: GenericSequence<B, Length = Self::Length>,
        F: FnMut(T, Rhs::Item) -> U,
    {
        rhs.inverted_zip(self, f)
    }

    #[inline(always)]
    fn fold<U, F>(self, init: U, mut f: F) -> U
    where
        F: FnMut(U, T) -> U,
    {
        unsafe {
            let mut source = ArrayConsumer::new(self);

            let (array_iter, position) = source.iter_position();

            array_iter.fold(init, |acc, src| {
                let value = ptr::read(src);
                *position += 1;
                f(acc, value)
            })
        }
    }
}

impl<T, N: ArrayLength> GenericArray<T, N> {
    /// Returns the number of elements in the array.
    ///
    /// Equivalent to [`<N as Unsigned>::USIZE`](typenum::Unsigned) where `N` is the array length.
    ///
    /// Useful for when only a type alias is available.
    pub const fn len() -> usize {
        N::USIZE
    }

    /// Extracts a slice containing the entire array.
    #[inline(always)]
    pub const fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) }
    }

    /// Extracts a mutable slice containing the entire array.
    #[inline(always)]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) }
    }

    /// Converts a slice to a generic array reference with inferred length.
    ///
    /// # Panics
    ///
    /// Panics if the slice is not equal to the length of the array.
    ///
    /// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion,
    /// or [`try_from_slice`](GenericArray::try_from_slice) for use in const expressions.
    #[inline(always)]
    pub const fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
        if slice.len() != N::USIZE {
            panic!("slice.len() != N in GenericArray::from_slice");
        }

        unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
    }

    /// Converts a slice to a generic array reference with inferred length.
    ///
    /// This is a fallible alternative to [`from_slice`](GenericArray::from_slice), and can be used in const expressions,
    /// but [`TryFrom`]/[`TryInto`] are also available to do the same thing.
    #[inline(always)]
    pub const fn try_from_slice(slice: &[T]) -> Result<&GenericArray<T, N>, LengthError> {
        if slice.len() != N::USIZE {
            return Err(LengthError);
        }

        Ok(unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) })
    }

    /// Converts a mutable slice to a mutable generic array reference with inferred length.
    ///
    /// # Panics
    ///
    /// Panics if the slice is not equal to the length of the array.
    ///
    /// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion.
    #[inline(always)]
    pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
        assert_eq!(
            slice.len(),
            N::USIZE,
            "slice.len() != N in GenericArray::from_mut_slice"
        );

        unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
    }

    /// Converts a mutable slice to a mutable generic array reference with inferred length.
    ///
    /// This is a fallible alternative to [`from_mut_slice`](GenericArray::from_mut_slice),
    /// and current just calls [`TryFrom`] internally, but is provided for
    /// future compatibility when we can make it const.
    #[inline(always)]
    pub fn try_from_mut_slice(slice: &mut [T]) -> Result<&mut GenericArray<T, N>, LengthError> {
        TryFrom::try_from(slice)
    }

    /// Converts a slice of `T` elements into a slice of `GenericArray<T, N>` chunks.
    ///
    /// Any remaining elements that do not fill the array will be returned as a second slice.
    ///
    /// # Panics
    ///
    /// Panics if `N` is `U0` _AND_ the input slice is not empty.
    pub const fn chunks_from_slice(slice: &[T]) -> (&[GenericArray<T, N>], &[T]) {
        if N::USIZE == 0 {
            assert!(slice.is_empty(), "GenericArray length N must be non-zero");
            return (&[], &[]);
        }

        // NOTE: Using `slice.split_at` adds an unnecessary assert
        let num_chunks = slice.len() / N::USIZE; // integer division
        let num_in_chunks = num_chunks * N::USIZE;
        let num_remainder = slice.len() - num_in_chunks;

        unsafe {
            (
                slice::from_raw_parts(slice.as_ptr() as *const GenericArray<T, N>, num_chunks),
                slice::from_raw_parts(slice.as_ptr().add(num_in_chunks), num_remainder),
            )
        }
    }

    /// Converts a mutable slice of `T` elements into a mutable slice `GenericArray<T, N>` chunks.
    ///
    /// Any remaining elements that do not fill the array will be returned as a second slice.
    ///
    /// # Panics
    ///
    /// Panics if `N` is `U0` _AND_ the input slice is not empty.
    pub fn chunks_from_slice_mut(slice: &mut [T]) -> (&mut [GenericArray<T, N>], &mut [T]) {
        if N::USIZE == 0 {
            assert!(slice.is_empty(), "GenericArray length N must be non-zero");
            return (&mut [], &mut []);
        }

        // NOTE: Using `slice.split_at_mut` adds an unnecessary assert
        let num_chunks = slice.len() / N::USIZE; // integer division
        let num_in_chunks = num_chunks * N::USIZE;
        let num_remainder = slice.len() - num_in_chunks;

        unsafe {
            (
                slice::from_raw_parts_mut(
                    slice.as_mut_ptr() as *mut GenericArray<T, N>,
                    num_chunks,
                ),
                slice::from_raw_parts_mut(slice.as_mut_ptr().add(num_in_chunks), num_remainder),
            )
        }
    }

    /// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
    #[inline(always)]
    pub const fn slice_from_chunks(slice: &[GenericArray<T, N>]) -> &[T] {
        unsafe { slice::from_raw_parts(slice.as_ptr() as *const T, slice.len() * N::USIZE) }
    }

    /// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
    #[inline(always)]
    pub fn slice_from_chunks_mut(slice: &mut [GenericArray<T, N>]) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut T, slice.len() * N::USIZE) }
    }

    /// Convert a native array into `GenericArray` of the same length and type.
    ///
    /// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
    #[inline(always)]
    pub const fn from_array<const U: usize>(value: [T; U]) -> Self
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { crate::const_transmute(value) }
    }

    /// Convert the `GenericArray` into a native array of the same length and type.
    ///
    /// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
    #[inline(always)]
    pub const fn into_array<const U: usize>(self) -> [T; U]
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { crate::const_transmute(self) }
    }

    /// Convert a slice of native arrays into a slice of `GenericArray`s.
    #[inline(always)]
    pub const fn from_chunks<const U: usize>(chunks: &[[T; U]]) -> &[GenericArray<T, N>]
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { mem::transmute(chunks) }
    }

    /// Convert a mutable slice of native arrays into a mutable slice of `GenericArray`s.
    #[inline(always)]
    pub fn from_chunks_mut<const U: usize>(chunks: &mut [[T; U]]) -> &mut [GenericArray<T, N>]
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { mem::transmute(chunks) }
    }

    /// Converts a slice `GenericArray<T, N>` into a slice of `[T; N]`
    #[inline(always)]
    pub const fn into_chunks<const U: usize>(chunks: &[GenericArray<T, N>]) -> &[[T; U]]
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { mem::transmute(chunks) }
    }

    /// Converts a mutable slice `GenericArray<T, N>` into a mutable slice of `[T; N]`
    #[inline(always)]
    pub fn into_chunks_mut<const U: usize>(chunks: &mut [GenericArray<T, N>]) -> &mut [[T; U]]
    where
        Const<U>: IntoArrayLength<ArrayLength = N>,
    {
        unsafe { mem::transmute(chunks) }
    }
}

impl<T, N: ArrayLength> GenericArray<T, N> {
    /// Create a new array of `MaybeUninit<T>` items, in an uninitialized state.
    ///
    /// See [`GenericArray::assume_init`] for a full example.
    #[inline(always)]
    #[allow(clippy::uninit_assumed_init)]
    pub const fn uninit() -> GenericArray<MaybeUninit<T>, N> {
        unsafe {
            // SAFETY: An uninitialized `[MaybeUninit<_>; N]` is valid, same as regular array
            MaybeUninit::<GenericArray<MaybeUninit<T>, N>>::uninit().assume_init()
        }
    }

    /// Extracts the values from a generic array of `MaybeUninit` containers.
    ///
    /// # Safety
    ///
    /// It is up to the caller to guarantee that all elements of the array are in an initialized state.
    ///
    /// # Example
    ///
    /// ```
    /// # use core::mem::MaybeUninit;
    /// # use generic_array::{GenericArray, typenum::U3, arr};
    /// let mut array: GenericArray<MaybeUninit<i32>, U3> = GenericArray::uninit();
    /// array[0].write(0);
    /// array[1].write(1);
    /// array[2].write(2);
    ///
    /// // SAFETY: Now safe as we initialised all elements
    /// let array = unsafe {
    ///     GenericArray::assume_init(array)
    /// };
    ///
    /// assert_eq!(array, arr![0, 1, 2]);
    /// ```
    #[inline(always)]
    pub const unsafe fn assume_init(array: GenericArray<MaybeUninit<T>, N>) -> Self {
        const_transmute::<_, MaybeUninit<GenericArray<T, N>>>(array).assume_init()
    }
}

/// Error for [`TryFrom`] and [`try_from_iter`](GenericArray::try_from_iter)
#[derive(Debug, Clone, Copy)]
pub struct LengthError;

// TODO: Impl core::error::Error when when https://github.com/rust-lang/rust/issues/103765 is finished

impl core::fmt::Display for LengthError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.write_str("LengthError: Slice or iterator does not match GenericArray length")
    }
}

impl<'a, T, N: ArrayLength> TryFrom<&'a [T]> for &'a GenericArray<T, N> {
    type Error = LengthError;

    #[inline(always)]
    fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> {
        GenericArray::try_from_slice(slice)
    }
}

impl<'a, T, N: ArrayLength> TryFrom<&'a mut [T]> for &'a mut GenericArray<T, N> {
    type Error = LengthError;

    #[inline(always)]
    fn try_from(slice: &'a mut [T]) -> Result<Self, Self::Error> {
        match slice.len() == N::USIZE {
            true => Ok(GenericArray::from_mut_slice(slice)),
            false => Err(LengthError),
        }
    }
}

impl<T, N: ArrayLength> GenericArray<T, N> {
    /// Fallible equivalent of [`FromIterator::from_iter`]
    ///
    /// Given iterator must yield exactly `N` elements or an error will be returned. Using [`.take(N)`](Iterator::take)
    /// with an iterator longer than the array may be helpful.
    #[inline]
    pub fn try_from_iter<I>(iter: I) -> Result<Self, LengthError>
    where
        I: IntoIterator<Item = T>,
    {
        let mut iter = iter.into_iter();

        // pre-checks
        match iter.size_hint() {
            // if the lower bound is greater than N, array will overflow
            (n, _) if n > N::USIZE => return Err(LengthError),
            // if the upper bound is smaller than N, array cannot be filled
            (_, Some(n)) if n < N::USIZE => return Err(LengthError),
            _ => {}
        }

        unsafe {
            let mut array = GenericArray::uninit();
            let mut builder = IntrusiveArrayBuilder::new(&mut array);

            builder.extend(&mut iter);

            if !builder.is_full() || iter.next().is_some() {
                return Err(LengthError);
            }

            Ok({
                builder.finish();
                IntrusiveArrayBuilder::array_assume_init(array)
            })
        }
    }
}

/// A const reimplementation of the [`transmute`](core::mem::transmute) function,
/// avoiding problems when the compiler can't prove equal sizes.
///
/// # Safety
/// Treat this the same as [`transmute`](core::mem::transmute), or (preferably) don't use it at all.
#[inline(always)]
#[cfg_attr(not(feature = "internals"), doc(hidden))]
pub const unsafe fn const_transmute<A, B>(a: A) -> B {
    if mem::size_of::<A>() != mem::size_of::<B>() {
        panic!("Size mismatch for generic_array::const_transmute");
    }

    #[repr(C)]
    union Union<A, B> {
        a: ManuallyDrop<A>,
        b: ManuallyDrop<B>,
    }

    let a = ManuallyDrop::new(a);
    ManuallyDrop::into_inner(Union { a }.b)
}

#[cfg(test)]
mod test {
    // Compile with:
    // cargo rustc --lib --profile test --release --
    //      -C target-cpu=native -C opt-level=3 --emit asm
    // and view the assembly to make sure test_assembly generates
    // SIMD instructions instead of a naive loop.

    #[inline(never)]
    pub fn black_box<T>(val: T) -> T {
        use core::{mem, ptr};

        let ret = unsafe { ptr::read_volatile(&val) };
        mem::forget(val);
        ret
    }

    #[test]
    fn test_assembly() {
        use crate::functional::*;

        let a = black_box(arr![1, 3, 5, 7]);
        let b = black_box(arr![2, 4, 6, 8]);

        let c = (&a).zip(b, |l, r| l + r);

        let d = a.fold(0, |a, x| a + x);

        assert_eq!(c, arr![3, 7, 11, 15]);

        assert_eq!(d, 16);
    }
}