mint/
rotation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
use crate::vector::Vector3;
use crate::IntoMint;
use core::marker::PhantomData;

/// Standard quaternion represented by the scalar and vector parts.
/// Useful for representing rotation in 3D space.
/// Corresponds to a right-handed rotation matrix.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
#[repr(C)]
pub struct Quaternion<T> {
    /// Vector part of a quaternion.
    pub v: Vector3<T>,
    /// Scalar part of a quaternion.
    pub s: T,
}

impl<T> IntoMint for Quaternion<T> {
    type MintType = Quaternion<T>;
}

impl<T> From<[T; 4]> for Quaternion<T> {
    fn from([x, y, z, s]: [T; 4]) -> Self {
        Quaternion {
            s,
            v: Vector3::from([x, y, z]),
        }
    }
}

impl<T> From<Quaternion<T>> for [T; 4] {
    fn from(quaternion: Quaternion<T>) -> [T; 4] {
        [quaternion.v.x, quaternion.v.y, quaternion.v.z, quaternion.s]
    }
}

impl<T> AsRef<[T; 4]> for Quaternion<T> {
    fn as_ref(&self) -> &[T; 4] {
        unsafe { ::core::mem::transmute(self) }
    }
}

impl<T> AsMut<[T; 4]> for Quaternion<T> {
    fn as_mut(&mut self) -> &mut [T; 4] {
        unsafe { ::core::mem::transmute(self) }
    }
}

#[cfg(feature = "serde")]
impl<T> ::serde::Serialize for Quaternion<T>
where
    T: ::serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ::serde::Serializer,
    {
        AsRef::<[T; 4]>::as_ref(self).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, T> ::serde::Deserialize<'de> for Quaternion<T>
where
    T: ::serde::Deserialize<'de>,
{
    fn deserialize<S>(deserializer: S) -> Result<Self, S::Error>
    where
        S: ::serde::Deserializer<'de>,
    {
        <[T; 4]>::deserialize(deserializer).map(Quaternion::<T>::from)
    }
}

/// Abstract set of Euler angles in 3D space. The basis of angles
/// is defined by the generic parameter `B`.
///
/// Note: there are multiple notations of Euler angles. They are
/// split in two groups:
///   - intrinsic (also known as "Tait-Bryan angles"): rotate around local axis
///   - extrinsic (also known as "Proper Euler angles"): rotate around world axis
/// For each interpretation, different axis may be chosen in different order.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
#[repr(C)]
pub struct EulerAngles<T, B> {
    /// First angle of rotation in range [-pi, pi] (_pitch_).
    pub a: T,
    /// Second angle of rotation around in range [-pi/2, pi/2] (_yaw_).
    pub b: T,
    /// Third angle of rotation in range [-pi, pi] (_roll_).
    pub c: T,
    /// Marker for the phantom basis.
    pub marker: PhantomData<B>,
}

/// Intrinsic rotation around X, then Y, then Z axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum IntraXYZ {}
/// Intrinsic rotation around Z, then X, then Z axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum IntraZXZ {}
/// Intrinsic rotation around Z, then Y, then X axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum IntraZYX {}
/// Extrinsic rotation around X, then Y, then Z axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum ExtraXYZ {}
/// Extrinsic rotation around Z, then X, then Z axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum ExtraZXZ {}
/// Extrinsic rotation around Z, then Y, then X axis.
#[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub enum ExtraZYX {}

impl<T, B> From<[T; 3]> for EulerAngles<T, B> {
    fn from([a, b, c]: [T; 3]) -> Self {
        EulerAngles {
            a,
            b,
            c,
            marker: PhantomData,
        }
    }
}

impl<T, B> From<EulerAngles<T, B>> for [T; 3] {
    fn from(euler: EulerAngles<T, B>) -> [T; 3] {
        [euler.a, euler.b, euler.c]
    }
}

#[cfg(feature = "serde")]
impl<T, B> ::serde::Serialize for EulerAngles<T, B>
where
    T: ::serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ::serde::Serializer,
    {
        [&self.a, &self.b, &self.c].serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, T, B> ::serde::Deserialize<'de> for EulerAngles<T, B>
where
    T: ::serde::Deserialize<'de>,
{
    fn deserialize<S>(deserializer: S) -> Result<Self, S::Error>
    where
        S: ::serde::Deserializer<'de>,
    {
        <[T; 3]>::deserialize(deserializer).map(EulerAngles::<T, B>::from)
    }
}

macro_rules! reverse {
    ($from:ident -> $to:ident) => {
        impl<T> From<EulerAngles<T, $from>> for EulerAngles<T, $to> {
            fn from(other: EulerAngles<T, $from>) -> Self {
                EulerAngles {
                    a: other.c,
                    b: other.b,
                    c: other.a,
                    marker: PhantomData,
                }
            }
        }
    };
    ($from:ident <-> $to:ident) => {
        reverse!($from -> $to);
        reverse!($to -> $from);
    };
}

reverse!(IntraXYZ <-> ExtraZYX);
reverse!(IntraZXZ <-> ExtraZXZ);
reverse!(IntraZYX <-> ExtraXYZ);