moore-svlog 0.13.2

The SystemVerilog implementation of the moore compiler framework.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// Copyright (c) 2016-2021 Fabian Schuiki

//! Representation of constant values and their operations
//!
//! This module implements a representation for values that may arise within a
//! SystemVerilog source text and provides ways of executing common operations
//! such as addition and multiplication. It also provides the ability to
//! evaluate the constant value of nodes in a context.
//!
//! The operations in this module are intended to panic if invalid combinations
//! of values are used. The compiler's type system should catch and prevent such
//! uses.

use crate::{
    crate_prelude::*,
    hir::HirNode,
    ty::{SbvType, UnpackedType},
    ParamEnv, ParamEnvBinding,
};
use bit_vec::BitVec;
use itertools::Itertools;
use num::{BigInt, BigRational, Integer, One, ToPrimitive, Zero};

/// A verilog value.
pub type Value<'t> = &'t ValueData<'t>;

/// The data associated with a value.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ValueData<'t> {
    /// The type of the value.
    pub ty: &'t UnpackedType<'t>,
    /// The actual value.
    pub kind: ValueKind<'t>,
}

impl<'t> ValueData<'t> {
    /// Check if the value represents a computation error tombstone.
    pub fn is_error(&self) -> bool {
        self.ty.is_error() || self.kind.is_error()
    }

    /// Check if this value evaluates to true.
    pub fn is_true(&self) -> bool {
        !self.is_false()
    }

    /// Check if this value evaluates to false.
    pub fn is_false(&self) -> bool {
        match self.kind {
            ValueKind::Void => true,
            ValueKind::Int(ref v, ..) => v.is_zero(),
            ValueKind::Time(ref v) => v.is_zero(),
            ValueKind::StructOrArray(_) => false,
            ValueKind::String(ref v) => v.is_empty(),
            ValueKind::Error => true,
        }
    }

    /// Convert the value to an integer.
    pub fn get_int(&self) -> Option<&BigInt> {
        match self.kind {
            ValueKind::Int(ref v, ..) => Some(v),
            _ => None,
        }
    }
}

impl std::fmt::Display for ValueData<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.kind)
    }
}

/// The different forms a value can assume.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum ValueKind<'t> {
    /// The `void` value.
    Void,
    /// An arbitrary precision integer.
    ///
    /// The first field contains the value. The second field indicates the
    /// special bits (x or z), and the third indicates the x bits.
    Int(BigInt, BitVec, BitVec),
    /// An arbitrary precision time interval.
    Time(BigRational),
    /// A struct.
    StructOrArray(Vec<Value<'t>>),
    /// A string.
    ///
    /// Note that we use a raw `u8` array, instead of Rust's `String` type. This
    /// is due to `String` guaranteeing that the encoded byte sequence is valid
    /// UTF8, which SystemVerilog does not guarantee.
    String(Vec<u8>),
    /// An error occurred during value computation.
    Error,
}

impl<'t> ValueKind<'t> {
    /// Check if the value represents a computation error tombstone.
    pub fn is_error(&self) -> bool {
        match self {
            ValueKind::Error => true,
            _ => false,
        }
    }
}

impl std::fmt::Display for ValueKind<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            ValueKind::Void => write!(f, "void"),
            ValueKind::Int(v, ..) => write!(f, "{}", v),
            ValueKind::Time(v) => write!(f, "{}", v),
            ValueKind::StructOrArray(v) => {
                write!(f, "{{ {} }}", v.iter().map(|v| &v.kind).format(", "))
            }
            ValueKind::String(v) => {
                write!(f, "\"")?;
                for &b in v {
                    if (b as char).is_ascii() {
                        write!(f, "{}", b as char)?;
                    } else {
                        write!(f, "\\x{:02x}", b)?;
                    }
                }
                write!(f, "\"")
            }
            ValueKind::Error => write!(f, "<error>"),
        }
    }
}

/// Create a new tombstone value.
pub fn make_error<'a>(ty: &'a UnpackedType<'a>) -> ValueData<'a> {
    ValueData {
        ty,
        kind: ValueKind::Error,
    }
}

/// Create a new integer value.
///
/// Panics if `ty` is not an integer type. Truncates the value to `ty`.
pub fn make_int<'a>(ty: &'a UnpackedType<'a>, value: BigInt) -> ValueData<'a> {
    let w = match ty.get_bit_size() {
        Some(x) => x,
        None => panic!("make_int got type `{}` which has no size", ty),
    };
    make_int_special(
        ty,
        value,
        BitVec::from_elem(w, false),
        BitVec::from_elem(w, false),
    )
}

/// Create a new integer value with special bits.
///
/// Panics if `ty` is not an integer type. Truncates the value to `ty`.
pub fn make_int_special<'a>(
    ty: &'a UnpackedType<'a>,
    value: BigInt,
    special_bits: BitVec,
    x_bits: BitVec,
) -> ValueData<'a> {
    let w = ty.get_bit_size().unwrap();
    ValueData {
        ty: ty,
        kind: ValueKind::Int(value % (BigInt::from(1) << w), special_bits, x_bits),
    }
}

/// Create a new time value.
pub fn make_time<'a>(value: BigRational) -> ValueData<'a> {
    ValueData {
        ty: UnpackedType::make_time(),
        kind: ValueKind::Time(value),
    }
}

/// Create a new struct value.
pub fn make_struct<'a>(ty: &'a UnpackedType<'a>, fields: Vec<Value<'a>>) -> ValueData<'a> {
    assert!(ty.dims().next().is_none() && ty.get_struct().is_some());
    ValueData {
        ty,
        kind: ValueKind::StructOrArray(fields),
    }
}

/// Create a new array value.
pub fn make_array<'a>(ty: &'a UnpackedType<'a>, elements: Vec<Value<'a>>) -> ValueData<'a> {
    assert!(!ty.dims().next().is_none());
    ValueData {
        ty,
        kind: ValueKind::StructOrArray(elements),
    }
}

/// Create a new string value.
pub fn make_string<'a>(ty: &'a UnpackedType<'a>, bytes: Vec<u8>) -> ValueData<'a> {
    assert!(ty.is_string());
    ValueData {
        ty,
        kind: ValueKind::String(bytes),
    }
}

/// Determine the constant value of a node.
#[moore_derive::query]
pub(crate) fn constant_value_of<'a>(
    cx: &impl Context<'a>,
    node_id: NodeId,
    env: ParamEnv,
) -> Value<'a> {
    let v = constant_value_of_inner(cx, node_id, env);
    if cx.sess().has_verbosity(Verbosity::CONSTS) {
        let span = cx.span(node_id);
        let ext = span.extract();
        let line = span.begin().human_line();
        println!("{}: const({}) = {}, {}", line, ext, v.ty, v.kind);
    }
    v
}

fn constant_value_of_inner<'a>(cx: &impl Context<'a>, node_id: NodeId, env: ParamEnv) -> Value<'a> {
    let hir = match cx.hir_of(node_id) {
        Ok(x) => x,
        _ => return cx.intern_value(make_error(UnpackedType::make_error())),
    };
    match hir {
        HirNode::Expr(expr) => {
            let mir = cx.mir_rvalue(expr.id, env);
            cx.const_mir_rvalue(mir.into())
        }
        HirNode::ValueParam(param) => {
            let env_data = cx.param_env_data(env);
            match env_data.find_value(node_id) {
                Some(ParamEnvBinding::Indirect(assigned_id)) => {
                    return cx.constant_value_of(assigned_id.id(), assigned_id.env())
                }
                Some(ParamEnvBinding::Direct(v)) => return v,
                _ => (),
            }
            if let Some(default) = param.default {
                return cx.constant_value_of(default, env);
            }
            let d = DiagBuilder2::error(format!(
                "{} not assigned and has no default",
                param.desc_full(),
            ));
            let contexts = cx.param_env_contexts(env);
            for &context in &contexts {
                cx.emit(
                    d.clone()
                        .span(cx.span(context))
                        .add_note("Parameter declared here:")
                        .span(param.human_span()),
                );
            }
            if contexts.is_empty() {
                cx.emit(d.span(param.human_span()));
            }
            cx.intern_value(make_error(UnpackedType::make_error()))
        }
        HirNode::GenvarDecl(decl) => {
            let env_data = cx.param_env_data(env);
            match env_data.find_value(node_id) {
                Some(ParamEnvBinding::Indirect(assigned_id)) => {
                    return cx.constant_value_of(assigned_id.id(), assigned_id.env())
                }
                Some(ParamEnvBinding::Direct(v)) => return v,
                _ => (),
            }
            if let Some(init) = decl.init {
                return cx.constant_value_of(init, env);
            }
            cx.emit(
                DiagBuilder2::error(format!("{} not initialized", decl.desc_full()))
                    .span(decl.human_span()),
            );
            cx.intern_value(make_error(UnpackedType::make_error()))
        }
        HirNode::EnumVariant(var) => match var.value {
            Some(v) => cx.constant_value_of(v, env),
            None => {
                let ty = match cx.type_of(node_id, env) {
                    Ok(x) => x,
                    _ => return cx.intern_value(make_error(UnpackedType::make_error())),
                };
                cx.intern_value(make_int(ty, var.index.into()))
            }
        },
        _ => {
            cx.emit(
                DiagBuilder2::error(format!("{} has no constant value", hir.desc_full()))
                    .span(hir.human_span()),
            );
            cx.intern_value(make_error(UnpackedType::make_error()))
        }
    }
}

/// Determine the constant integer value of an MIR rvalue.
///
/// Emits a diagnostic if the value is not an integer.
#[moore_derive::query]
pub(crate) fn const_mir_rvalue_int<'a>(
    cx: &impl Context<'a>,
    mir: Ref<'a, mir::Rvalue<'a>>,
) -> Result<&'a num::BigInt> {
    match cx.const_mir_rvalue(mir).kind {
        ValueKind::Int(ref x, ..) => Ok(x),
        ValueKind::Error => Err(()),
        _ => {
            cx.emit(
                DiagBuilder2::error(format!(
                    "`{}` is not a constant integer",
                    mir.span.extract()
                ))
                .span(mir.span),
            );
            Err(())
        }
    }
}

/// Determine the constant string value of an MIR rvalue.
///
/// Emits a diagnostic if the value is not a string.
#[moore_derive::query]
pub(crate) fn const_mir_rvalue_string<'a>(
    cx: &impl Context<'a>,
    mir: Ref<'a, mir::Rvalue<'a>>,
) -> Result<&'a Vec<u8>> {
    match cx.const_mir_rvalue(mir).kind {
        ValueKind::String(ref x) => Ok(x),
        ValueKind::Error => Err(()),
        _ => {
            cx.emit(
                DiagBuilder2::error(format!("`{}` is not a constant string", mir.span.extract()))
                    .span(mir.span),
            );
            Err(())
        }
    }
}

/// Determine the constant value of an MIR rvalue.
#[moore_derive::query]
pub(crate) fn const_mir_rvalue<'a>(
    cx: &impl Context<'a>,
    Ref(mir): Ref<'a, mir::Rvalue<'a>>,
) -> Value<'a> {
    let v = const_mir_rvalue_inner(cx, mir);
    if cx.sess().has_verbosity(Verbosity::CONSTS) {
        let ext = mir.span.extract();
        let line = mir.span.begin().human_line();
        println!("{}: const_mir({}) = {}, {}", line, ext, v.ty, v.kind);
    }
    v
}

fn const_mir_rvalue_inner<'a>(cx: &impl Context<'a>, mir: &'a mir::Rvalue<'a>) -> Value<'a> {
    // Propagate MIR tombstones immediately.
    if mir.is_error() {
        return cx.intern_value(make_error(mir.ty));
    }

    match mir.kind {
        // TODO: Casts are just transparent at the moment. That's pretty bad.
        mir::RvalueKind::CastValueDomain { value, .. }
        | mir::RvalueKind::CastSign(_, value)
        | mir::RvalueKind::Truncate(_, value)
        | mir::RvalueKind::ZeroExtend(_, value)
        | mir::RvalueKind::SignExtend(_, value) => {
            warn!(
                "Cast ignored during constant evaluation: `{}` from `{}` to `{}`",
                value.span.extract(),
                value.ty,
                mir.ty
            );
            let v = cx.const_mir_rvalue(value.into());
            // TODO: This is an incredibly ugly hack.
            cx.intern_value(ValueData {
                ty: mir.ty,
                kind: v.kind.clone(),
            })
        }

        mir::RvalueKind::Transmute(value) => {
            let v = cx.const_mir_rvalue(value.into());
            cx.intern_value(ValueData {
                ty: mir.ty,
                kind: v.kind.clone(),
            })
        }

        mir::RvalueKind::CastToBool(value) => {
            let value = cx.const_mir_rvalue(value.into());
            if value.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            cx.intern_value(make_int(mir.ty, (value.is_true() as usize).into()))
        }

        mir::RvalueKind::ConstructArray(ref values) => cx.intern_value(make_array(
            mir.ty,
            (0..values.len())
                .map(|index| cx.const_mir_rvalue(values[&index].into()))
                .collect(),
        )),

        mir::RvalueKind::ConstructStruct(ref values) => cx.intern_value(make_struct(
            mir.ty,
            values
                .iter()
                .map(|&value| cx.const_mir_rvalue(value.into()))
                .collect(),
        )),

        mir::RvalueKind::Const(value) => value,

        mir::RvalueKind::UnaryBitwise { op, arg } => {
            let arg_val = cx.const_mir_rvalue(arg.into());
            if arg_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match arg_val.kind {
                ValueKind::Int(ref arg_int, ..) => cx.intern_value(make_int(
                    mir.ty,
                    const_unary_bitwise_int(
                        cx,
                        mir.ty.simple_bit_vector(cx, mir.span),
                        op,
                        arg_int,
                    ),
                )),
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::BinaryBitwise { op, lhs, rhs } => {
            let lhs_val = cx.const_mir_rvalue(lhs.into());
            let rhs_val = cx.const_mir_rvalue(rhs.into());
            if lhs_val.is_error() || rhs_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match (&lhs_val.kind, &rhs_val.kind) {
                (ValueKind::Int(lhs_int, ..), ValueKind::Int(rhs_int, ..)) => {
                    cx.intern_value(make_int(
                        mir.ty,
                        const_binary_bitwise_int(
                            cx,
                            mir.ty.simple_bit_vector(cx, mir.span),
                            op,
                            lhs_int,
                            rhs_int,
                        ),
                    ))
                }
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::IntUnaryArith { op, arg, .. } => {
            let arg_val = cx.const_mir_rvalue(arg.into());
            if arg_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match arg_val.kind {
                ValueKind::Int(ref arg_int, ..) => cx.intern_value(make_int(
                    mir.ty,
                    const_unary_arith_int(cx, mir.ty.simple_bit_vector(cx, mir.span), op, arg_int),
                )),
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::IntBinaryArith { op, lhs, rhs, .. } => {
            let lhs_val = cx.const_mir_rvalue(lhs.into());
            let rhs_val = cx.const_mir_rvalue(rhs.into());
            if lhs_val.is_error() || rhs_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match (&lhs_val.kind, &rhs_val.kind) {
                (ValueKind::Int(lhs_int, ..), ValueKind::Int(rhs_int, ..)) => {
                    cx.intern_value(make_int(
                        mir.ty,
                        const_binary_arith_int(
                            cx,
                            mir.ty.simple_bit_vector(cx, mir.span),
                            op,
                            lhs_int,
                            rhs_int,
                        ),
                    ))
                }
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::IntComp { op, lhs, rhs, .. } => {
            let lhs_val = cx.const_mir_rvalue(lhs.into());
            let rhs_val = cx.const_mir_rvalue(rhs.into());
            if lhs_val.is_error() || rhs_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match (&lhs_val.kind, &rhs_val.kind) {
                (ValueKind::Int(lhs_int, ..), ValueKind::Int(rhs_int, ..)) => {
                    cx.intern_value(make_int(
                        mir.ty,
                        const_comp_int(
                            cx,
                            mir.ty.simple_bit_vector(cx, mir.span),
                            op,
                            lhs_int,
                            rhs_int,
                        ),
                    ))
                }
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::Concat(ref values) => {
            let mut result = BigInt::zero();
            for &value in values {
                result <<= value.ty.simple_bit_vector(cx, value.span).size;
                result |= cx
                    .const_mir_rvalue(value.into())
                    .get_int()
                    .expect("concat non-integer");
            }
            cx.intern_value(make_int(mir.ty, result))
        }

        mir::RvalueKind::Repeat(count, value) => {
            let value_const = cx.const_mir_rvalue(value.into());
            if value_const.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            let sbvt = value.ty.simple_bit_vector(cx, value.span);
            let mut result = BigInt::zero();
            for _ in 0..count {
                result <<= sbvt.size;
                result |= value_const.get_int().expect("repeat non-integer");
            }
            cx.intern_value(make_int(mir.ty, result))
        }

        mir::RvalueKind::Assignment { .. }
        | mir::RvalueKind::Var(_)
        | mir::RvalueKind::Port(_)
        | mir::RvalueKind::IntfSignal(..)
        | mir::RvalueKind::Intf(..) => {
            cx.emit(DiagBuilder2::error("value is not constant").span(mir.span));
            cx.intern_value(make_error(mir.ty))
        }

        mir::RvalueKind::Member { value, field } => {
            let value_const = cx.const_mir_rvalue(value.into());
            if value_const.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match value_const.kind {
                ValueKind::StructOrArray(ref fields) => fields[field],
                _ => unreachable!("member access on non-struct should be caught in typeck"),
            }
        }

        mir::RvalueKind::Ternary {
            cond,
            true_value,
            false_value,
        } => {
            let cond_val = cx.const_mir_rvalue(cond.into());
            let true_val = cx.const_mir_rvalue(true_value.into());
            let false_val = cx.const_mir_rvalue(false_value.into());
            match cond_val.is_true() {
                true => true_val,
                false => false_val,
            }
        }

        mir::RvalueKind::Shift {
            op,
            arith,
            value,
            amount,
            ..
        } => {
            let value_val = cx.const_mir_rvalue(value.into());
            let amount_val = cx.const_mir_rvalue(amount.into());
            if value_val.is_error() || amount_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match (&value_val.kind, &amount_val.kind) {
                (ValueKind::Int(value_int, ..), ValueKind::Int(amount_int, ..)) => {
                    cx.intern_value(make_int(
                        mir.ty,
                        const_shift_int(
                            cx,
                            value.ty.simple_bit_vector(cx, value.span),
                            op,
                            arith,
                            value_int,
                            amount_int,
                        ),
                    ))
                }
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::Reduction { op, arg } => {
            let arg_val = cx.const_mir_rvalue(arg.into());
            if arg_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match arg_val.kind {
                ValueKind::Int(ref arg_int, ..) => cx.intern_value(make_int(
                    mir.ty,
                    const_reduction_int(cx, arg.ty.simple_bit_vector(cx, arg.span), op, arg_int),
                )),
                _ => unreachable!(),
            }
        }

        mir::RvalueKind::Index {
            value,
            base,
            length,
            ..
        } => {
            let inner_val = cx.const_mir_rvalue(value.into());
            if inner_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            let base = match cx.const_mir_rvalue_int(Ref(base)) {
                Ok(x) => x.to_isize().expect("base out of bounds"),
                _ => return cx.intern_value(make_error(mir.ty)),
            };
            match inner_val.kind {
                // TODO: This magic should all be replaced by a dedicated
                // arithmetic module which handles the semantics of SV properly.
                ValueKind::Int(ref int, ref special_bits, ref x_bits) => {
                    let length = std::cmp::max(length, 1); // bit-select same as length-1-select
                    let v = if base < 0 {
                        int << (-base) as usize
                    } else {
                        int >> base as usize
                    };
                    let v = v % (BigInt::one() << length);
                    let mut new_special_bits = BitVec::from_elem(length, false);
                    let mut new_x_bits = BitVec::from_elem(length, false);
                    for i in 0..length as isize {
                        if i >= base && i < base + length as isize {
                            new_special_bits.set((i - base) as usize, special_bits[i as usize]);
                            new_x_bits.set((i - base) as usize, x_bits[i as usize]);
                        }
                    }
                    cx.intern_value(make_int_special(mir.ty, v, new_special_bits, new_x_bits))
                }
                ValueKind::StructOrArray(ref values) if length == 0 => {
                    if base < 0 || base >= values.len() as isize {
                        cx.type_default_value(mir.ty)
                    } else {
                        values[base as usize]
                    }
                }
                ValueKind::StructOrArray(ref values) => {
                    let mut new_values = Vec::with_capacity(length);
                    if base < 0 {
                        let default = cx.type_default_value(mir.ty);
                        for _ in base..0 {
                            new_values.push(default);
                        }
                    }
                    let base = std::cmp::max(base, 0) as usize;
                    if base < values.len() {
                        for &v in &values[base..] {
                            new_values.push(v);
                        }
                    }
                    if new_values.len() < length {
                        let default = cx.type_default_value(mir.ty);
                        for _ in new_values.len()..length {
                            new_values.push(default);
                        }
                    }
                    cx.intern_value(make_array(mir.ty, new_values))
                }
                _ => unreachable!("const index op on value {:?}", inner_val),
            }
        }

        // Pack a string into a vector.
        mir::RvalueKind::PackString(value) => match cx.const_mir_rvalue_string(value.into()) {
            Ok(v) => cx.intern_value(make_int(
                mir.ty,
                BigInt::from_bytes_be(num::bigint::Sign::Plus, v),
            )),
            Err(()) => cx.intern_value(make_error(mir.ty)),
        },

        // Unpack a string from a vector.
        mir::RvalueKind::UnpackString(value) => {
            let mut konst = match cx.const_mir_rvalue_int(value.into()) {
                Ok(v) => v.clone(),
                Err(()) => return cx.intern_value(make_error(mir.ty)),
            };
            let mut bytes = vec![];
            while !konst.is_zero() {
                let byte = (&konst & BigInt::from(0xFF)).to_usize().unwrap() as u8;
                if byte != 0 {
                    bytes.push(byte);
                }
                konst >>= 8;
            }
            bytes.reverse();
            cx.intern_value(make_string(mir.ty, bytes))
        }

        mir::RvalueKind::StringComp { op, lhs, rhs, .. } => {
            let lhs_val = cx.const_mir_rvalue(lhs.into());
            let rhs_val = cx.const_mir_rvalue(rhs.into());
            if lhs_val.is_error() || rhs_val.is_error() {
                return cx.intern_value(make_error(mir.ty));
            }
            match (&lhs_val.kind, &rhs_val.kind) {
                (ValueKind::String(lhs_string), ValueKind::String(rhs_string)) => cx.intern_value(
                    make_int(mir.ty, const_comp_string(cx, op, lhs_string, rhs_string)),
                ),
                _ => unreachable!(),
            }
        }

        // Propagate tombstones.
        mir::RvalueKind::Error => cx.intern_value(make_error(mir.ty)),
    }
}

fn const_unary_bitwise_int<'gcx>(
    _cx: &impl Context<'gcx>,
    ty: SbvType,
    op: mir::UnaryBitwiseOp,
    arg: &BigInt,
) -> BigInt {
    match op {
        mir::UnaryBitwiseOp::Not => (BigInt::one() << ty.size) - 1 - arg,
    }
}

fn const_binary_bitwise_int<'gcx>(
    _cx: &impl Context<'gcx>,
    _ty: SbvType,
    op: mir::BinaryBitwiseOp,
    lhs: &BigInt,
    rhs: &BigInt,
) -> BigInt {
    match op {
        mir::BinaryBitwiseOp::And => lhs & rhs,
        mir::BinaryBitwiseOp::Or => lhs | rhs,
        mir::BinaryBitwiseOp::Xor => lhs ^ rhs,
    }
}

fn const_unary_arith_int<'gcx>(
    _cx: &impl Context<'gcx>,
    _ty: SbvType,
    op: mir::IntUnaryArithOp,
    arg: &BigInt,
) -> BigInt {
    match op {
        mir::IntUnaryArithOp::Neg => -arg,
    }
}

fn const_binary_arith_int<'gcx>(
    _cx: &impl Context<'gcx>,
    _ty: SbvType,
    op: mir::IntBinaryArithOp,
    lhs: &BigInt,
    rhs: &BigInt,
) -> BigInt {
    match op {
        mir::IntBinaryArithOp::Add => lhs + rhs,
        mir::IntBinaryArithOp::Sub => lhs - rhs,
        mir::IntBinaryArithOp::Mul => lhs * rhs,
        mir::IntBinaryArithOp::Div => lhs / rhs,
        mir::IntBinaryArithOp::Mod => lhs % rhs,
        mir::IntBinaryArithOp::Pow => {
            let mut result = num::one();
            let mut cnt = rhs.clone();
            while !cnt.is_zero() {
                result = result * lhs;
                cnt = cnt - 1;
            }
            result
        }
    }
}

fn const_comp_int<'gcx>(
    _cx: &impl Context<'gcx>,
    _ty: SbvType,
    op: mir::IntCompOp,
    lhs: &BigInt,
    rhs: &BigInt,
) -> BigInt {
    match op {
        mir::IntCompOp::Eq => ((lhs == rhs) as usize).into(),
        mir::IntCompOp::Neq => ((lhs != rhs) as usize).into(),
        mir::IntCompOp::Lt => ((lhs < rhs) as usize).into(),
        mir::IntCompOp::Leq => ((lhs <= rhs) as usize).into(),
        mir::IntCompOp::Gt => ((lhs > rhs) as usize).into(),
        mir::IntCompOp::Geq => ((lhs >= rhs) as usize).into(),
    }
}

fn const_shift_int<'gcx>(
    _cx: &impl Context<'gcx>,
    _ty: SbvType,
    op: mir::ShiftOp,
    _arith: bool,
    value: &BigInt,
    amount: &BigInt,
) -> BigInt {
    match op {
        mir::ShiftOp::Left => match amount.to_isize() {
            Some(sh) if sh < 0 => value >> -sh as usize,
            Some(sh) => value << sh as usize,
            None => num::zero(),
        },
        mir::ShiftOp::Right => match amount.to_isize() {
            Some(sh) if sh < 0 => value << -sh as usize,
            Some(sh) => value >> sh as usize,
            None => num::zero(),
        },
    }
}

fn const_reduction_int<'gcx>(
    _cx: &impl Context<'gcx>,
    ty: SbvType,
    op: mir::BinaryBitwiseOp,
    arg: &BigInt,
) -> BigInt {
    match op {
        mir::BinaryBitwiseOp::And => ((arg == &((BigInt::one() << ty.size) - 1)) as usize).into(),
        mir::BinaryBitwiseOp::Or => ((!arg.is_zero()) as usize).into(),
        mir::BinaryBitwiseOp::Xor => (arg
            .to_bytes_le()
            .1
            .into_iter()
            .map(|v| v.count_ones())
            .sum::<u32>()
            .is_odd() as usize)
            .into(),
    }
}

/// Perform a constant comparison of two string values.
fn const_comp_string<'gcx>(
    _cx: &impl Context<'gcx>,
    op: mir::StringCompOp,
    lhs: &[u8],
    rhs: &[u8],
) -> BigInt {
    match op {
        mir::StringCompOp::Eq => ((lhs == rhs) as usize).into(),
        mir::StringCompOp::Neq => ((lhs != rhs) as usize).into(),
    }
}

/// Check if a node has a constant value.
#[moore_derive::query]
pub(crate) fn is_constant<'a>(cx: &impl Context<'a>, node_id: NodeId) -> Result<bool> {
    let hir = cx.hir_of(node_id)?;
    Ok(match hir {
        HirNode::ValueParam(_) => true,
        HirNode::GenvarDecl(_) => true,
        HirNode::EnumVariant(_) => true,
        _ => false,
    })
}

/// Determine the default value of a type.
#[moore_derive::query]
pub(crate) fn type_default_value<'a>(cx: &impl Context<'a>, ty: &'a UnpackedType<'a>) -> Value<'a> {
    let ty = ty.resolve_full();
    if ty.is_error() {
        return cx.intern_value(ValueData {
            ty: UnpackedType::make_error(),
            kind: ValueKind::Error,
        });
    }

    // Handle structs.
    if let Some(strukt) = ty.get_struct() {
        let fields = strukt
            .members
            .iter()
            .map(|field| type_default_value(cx, field.ty))
            .collect();
        return cx.intern_value(make_struct(ty, fields));
    }

    // Handle packed base cases.
    if let Some(packed) = ty.get_packed() {
        let packed = packed;
        match packed.core {
            ty::PackedCore::IntVec(_) if packed.dims.len() <= 1 => {
                return cx.intern_value(make_int(ty, Zero::zero()));
            }
            ty::PackedCore::IntAtom(ty::IntAtomType::Time) if packed.dims.is_empty() => {
                return cx.intern_value(make_time(Zero::zero()));
            }
            ty::PackedCore::IntAtom(_) if packed.dims.is_empty() => {
                return cx.intern_value(make_int(ty, Zero::zero()));
            }
            _ => (),
        }
    }

    // Handle arrays.
    if let Some(dim) = ty.outermost_dim() {
        let length = dim
            .get_size()
            .expect("cannot build const value of unsized array");
        let elem_ty = ty.pop_dim(cx).unwrap();
        return cx.intern_value(make_array(
            ty,
            std::iter::repeat(cx.type_default_value(elem_ty))
                .take(length)
                .collect(),
        ));
    }
    assert!(
        ty.dims.is_empty(),
        "unpacked dims should have been handled above: `{}`",
        ty
    );

    // Handle unpacked types.
    let packed = match ty.core {
        ty::UnpackedCore::Packed(p) => p,
        _ => panic!("cannot build const value of unpacked type `{}`", ty),
    };

    // Handle packed types.
    assert!(
        packed.dims.is_empty(),
        "packed dims should have been handled above: `{}`",
        packed
    );
    match packed.core {
        ty::PackedCore::Void => {
            return cx.intern_value(ValueData {
                ty,
                kind: ValueKind::Void,
            })
        }
        ty::PackedCore::Enum(ref x) => return cx.type_default_value(x.base.to_unpacked(cx)),
        ty::PackedCore::IntVec(_) | ty::PackedCore::IntAtom(_) | ty::PackedCore::Struct(_) => {
            unreachable!("should be handled above")
        }
        _ => panic!("cannot build const value of packed type `{}`", packed),
    }
}