mysql 18.2.0

Mysql client library implemented in rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
[![Crates.io](https://img.shields.io/crates/v/mysql.svg)](https://crates.io/crates/mysql)
[![Build Status](https://dev.azure.com/aikorsky/mysql%20Rust/_apis/build/status/blackbeam%2Erust%2Dmysql%2Dsimple)](https://dev.azure.com/aikorsky/mysql%20Rust/_build/latest?definitionId=1)

# mysql

This create offers:

*   MySql database driver in pure rust;
*   connection pool.

Features:

*   macOS, Windows and Linux support;
*   TLS support via **nativetls** create;
*   MySql text protocol support, i.e. support of simple text queries and text result sets;
*   MySql binary protocol support, i.e. support of prepared statements and binary result sets;
*   support of multi-result sets;
*   support of named parameters for prepared statements;
*   optional per-connection cache of prepared statements;
*   support of MySql packets larger than 2^24;
*   support of Unix sockets and Windows named pipes;
*   support of custom LOCAL INFILE handlers;
*   support of MySql protocol compression;
*   support of auth plugins:
    *   **mysql_native_password** - for MySql prior to v8;
    *   **caching_sha2_password** - for MySql v8 and higher.

### Installation

Put the desired version of the crate into the `dependencies` section of your `Cargo.toml`:

```toml
[dependencies]
mysql = "*"
```

### Example

```rust
use mysql::*;
use mysql::prelude::*;

#[derive(Debug, PartialEq, Eq)]
struct Payment {
    customer_id: i32,
    amount: i32,
    account_name: Option<String>,
}

let url = "mysql://root:password@localhost:3307/db_name";

let pool = Pool::new(url)?;

let mut conn = pool.get_conn()?;

// Let's create a table for payments.
conn.query_drop(
    r"CREATE TEMPORARY TABLE payment (
        customer_id int not null,
        amount int not null,
        account_name text
    )")?;

let payments = vec![
    Payment { customer_id: 1, amount: 2, account_name: None },
    Payment { customer_id: 3, amount: 4, account_name: Some("foo".into()) },
    Payment { customer_id: 5, amount: 6, account_name: None },
    Payment { customer_id: 7, amount: 8, account_name: None },
    Payment { customer_id: 9, amount: 10, account_name: Some("bar".into()) },
];

// Now let's insert payments to the database
conn.exec_batch(
    r"INSERT INTO payment (customer_id, amount, account_name)
      VALUES (:customer_id, :amount, :account_name)",
    payments.iter().map(|p| params! {
        "customer_id" => p.customer_id,
        "amount" => p.amount,
        "account_name" => &p.account_name,
    })
)?;

// Let's select payments from database. Type inference should do the trick here.
let selected_payments = conn
    .query_map(
        "SELECT customer_id, amount, account_name from payment",
        |(customer_id, amount, account_name)| {
            Payment { customer_id, amount, account_name }
        },
    )?;

// Let's make sure, that `payments` equals to `selected_payments`.
// Mysql gives no guaranties on order of returned rows
// without `ORDER BY`, so assume we are lucky.
assert_eq!(payments, selected_payments);
println!("Yay!");
```

### API Documentation

Please refer to the [crate docs].

### Basic structures

#### `Opts`

This structure holds server host name, client username/password and other settings,
that controls client behavior.

##### URL-based connection string

Note, that you can use URL-based connection string as a source of an `Opts` instance.
URL schema must be `mysql`. Host, port and credentials, as well as query parameters,
should be given in accordance with the RFC 3986.

Examples:

```rust
let _ = Opts::from_url("mysql://localhost/some_db")?;
let _ = Opts::from_url("mysql://[::1]/some_db")?;
let _ = Opts::from_url("mysql://user:pass%20word@127.0.0.1:3307/some_db?")?;
```

Supported URL parameters (for the meaning of each field please refer to the docs on `Opts`
structure in the create API docs):

*   `prefer_socket: true | false` - defines the value of the same field in the `Opts` structure;
*   `tcp_keepalive_time_ms: u32` - defines the value (in milliseconds)
    of the `tcp_keepalive_time` field in the `Opts` structure;
*   `tcp_connect_timeout_ms: u64` - defines the value (in milliseconds)
    of the `tcp_connect_timeout` field in the `Opts` structure;
*   `stmt_cache_size: u32` - defines the value of the same field in the `Opts` structure;
*   `compress` - defines the value of the same field in the `Opts` structure.
    Supported value are:
    *  `true` - enables compression with the default compression level;
    *  `fast` - enables compression with "fast" compression level;
    *  `best` - enables compression with "best" compression level;
    *  `1`..`9` - enables compression with the given compression level.
*   `socket` - socket path on UNIX, or pipe name on Windows.

#### `OptsBuilder`

It's a convenient builder for the `Opts` structure. It defines setters for fields
of the `Opts` structure.

```rust
let opts = OptsBuilder::new()
    .user(Some("foo"))
    .db_name(Some("bar"));
let _ = Conn::new(opts)?;
```

#### `Conn`

This structure represents an active MySql connection. It also holds statement cache
and metadata for the last result set.

#### `Transaction`

It's a simple wrapper on top of a routine, that starts with `START TRANSACTION`
and ends with `COMMIT` or `ROLBACK`.

```rust
use mysql::*;
use mysql::prelude::*;

let pool = Pool::new(get_opts())?;
let mut conn = pool.get_conn()?;

let mut tx = conn.start_transaction(TxOpts::default())?;
tx.query_drop("CREATE TEMPORARY TABLE tmp (TEXT a)")?;
tx.exec_drop("INSERT INTO tmp (a) VALUES (?)", ("foo",))?;
let val: Option<String> = tx.query_first("SELECT a from tmp")?;
assert_eq!(val.unwrap(), "foo");
// Note, that transaction will be rolled back implicitly on Drop, if not committed.
tx.rollback();

let val: Option<String> = conn.query_first("SELECT a from tmp")?;
assert_eq!(val, None);
```

#### `Pool`

It's a reference to a connection pool, that can be cloned and shared between threads.

```rust
use mysql::*;
use mysql::prelude::*;

use std::thread::spawn;

let pool = Pool::new(get_opts())?;

let handles = (0..4).map(|i| {
    spawn({
        let pool = pool.clone();
        move || {
            let mut conn = pool.get_conn()?;
            conn.exec_first::<u32, _, _>("SELECT ? * 10", (i,))
                .map(Option::unwrap)
        }
    })
});

let result: Result<Vec<u32>> = handles.map(|handle| handle.join().unwrap()).collect();

assert_eq!(result.unwrap(), vec![0, 10, 20, 30]);
```

#### `Statement`

Statement, actually, is just an identifier coupled with statement metadata, i.e an information
about its parameters and columns. Internally the `Statement` structure also holds additional
data required to support named parameters (see bellow).

```rust
use mysql::*;
use mysql::prelude::*;

let pool = Pool::new(get_opts())?;
let mut conn = pool.get_conn()?;

let stmt = conn.prep("DO ?")?;

// The prepared statement will return no columns.
assert!(stmt.columns().is_empty());

// The prepared statement have one parameter.
let param = stmt.params().get(0).unwrap();
assert_eq!(param.schema_str(), "");
assert_eq!(param.table_str(), "");
assert_eq!(param.name_str(), "?");
```

#### `Value`

This enumeration represents the raw value of a MySql cell. Library offers conversion between
`Value` and different rust types via `FromValue` trait described below.

##### `FromValue` trait

This trait is reexported from **mysql_common** create. Please refer to its
[crate docs][mysql_common docs] for the list of supported conversions.

Trait offers conversion in two flavours:

*   `from_value(Value) -> T` - convenient, but panicking conversion.

    Note, that for any variant of `Value` there exist a type, that fully covers its domain,
    i.e. for any variant of `Value` there exist `T: FromValue` such that `from_value` will never
    panic. This means, that if your database schema is known, than it's possible to write your
    application using only `from_value` with no fear of runtime panic.

*   `from_value_opt(Value) -> Option<T>` - non-panicking, but less convenient conversion.

    This function is useful to probe conversion in cases, where source database schema
    is unknown.

```rust
use mysql::*;
use mysql::prelude::*;

let via_test_protocol: u32 = from_value(Value::Bytes(b"65536".to_vec()));
let via_bin_protocol: u32 = from_value(Value::UInt(65536));
assert_eq!(via_test_protocol, via_bin_protocol);

let unknown_val = // ...

// Maybe it is a float?
let unknown_val = match from_value_opt::<f64>(unknown_val) {
    Ok(float) => {
        println!("A float value: {}", float);
        return Ok(());
    }
    Err(FromValueError(unknown_val)) => unknown_val,
};

// Or a string?
let unknown_val = match from_value_opt::<String>(unknown_val) {
    Ok(string) => {
        println!("A string value: {}", string);
        return Ok(());
    }
    Err(FromValueError(unknown_val)) => unknown_val,
};

// Screw this, I'll simply match on it
match unknown_val {
    val @ Value::NULL => {
        println!("An empty value: {:?}", from_value::<Option<u8>>(val))
    },
    val @ Value::Bytes(..) => {
        // It's non-utf8 bytes, since we already tried to convert it to String
        println!("Bytes: {:?}", from_value::<Vec<u8>>(val))
    }
    val @ Value::Int(..) => {
        println!("A signed integer: {}", from_value::<i64>(val))
    }
    val @ Value::UInt(..) => {
        println!("An unsigned integer: {}", from_value::<u64>(val))
    }
    Value::Float(..) => unreachable!("already tried"),
    val @ Value::Date(..) => {
        use mysql::chrono::NaiveDateTime;
        println!("A date value: {}", from_value::<NaiveDateTime>(val))
    }
    val @ Value::Time(..) => {
        use std::time::Duration;
        println!("A time value: {:?}", from_value::<Duration>(val))
    }
}
```

#### `Row`

Internally `Row` is a vector of `Value`s, that also allows indexing by a column name/offset,
and stores row metadata. Library offers conversion between `Row` and sequences of Rust types
via `FromRow` trait described below.

##### `FromRow` trait

This trait is reexported from **mysql_common** create. Please refer to its
[crate docs][mysql_common docs] for the list of supported conversions.

This conversion is based on the `FromValue` and so comes in two similar flavours:

*   `from_row(Row) -> T` - same as `from_value`, but for rows;
*   `from_row_opt(Row) -> Option<T>` - same as `from_value_opt`, but for rows.

[`Queryable`][#queryable] trait offers implicit conversion for rows of a query result,
that is based on this trait.

```rust
use mysql::*;
use mysql::prelude::*;

let mut conn = Conn::new(get_opts())?;

// Single-column row can be converted to a singular value
let val: Option<String> = conn.query_first("SELECT 'foo'")?;
assert_eq!(val.unwrap(), "foo");

// Example of a mutli-column row conversion to an inferred type.
let row = conn.query_first("SELECT 255, 256")?;
assert_eq!(row, Some((255u8, 256u16)));

// Some unknown row
let row: Row = conn.query_first(
    // ...
    # "SELECT 255, Null",
)?.unwrap();

for column in row.columns_ref() {
    // Cells in a row can be indexed by numeric index or by column name
    let column_value = &row[column.name_str().as_ref()];

    println!(
        "Column {} of type {:?} with value {:?}",
        column.name_str(),
        column.column_type(),
        column_value,
    );
}
```

#### `Params`

Represents parameters of a prepared statement, but this type won't appear directly in your code
because binary protocol API will ask for `T: Into<Params>`, where `Into<Params>` is implemented:

*   for tuples of `Into<Value>` types up to arity 12;

    **Note:** singular tuple requires extra comma, e.g. `("foo",)`;

*   for `IntoIterator<Item: Into<Value>>` for cases, when your statement takes more
    than 12 parameters;
*   for named parameters representation (the value of the `params!` macro, described below).

```rust
use mysql::*;
use mysql::prelude::*;

let mut conn = Conn::new(get_opts())?;

// Singular tuple requires extra comma:
let row: Option<u8> = conn.exec_first("SELECT ?", (0,))?;
assert_eq!(row.unwrap(), 0);

// More than 12 parameters:
let row: Option<u8> = conn.exec_first(
    "SELECT ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ?",
    (0..16).collect::<Vec<_>>(),
)?;
assert_eq!(row.unwrap(), 120);
```

**Note:** Please refer to the [**mysql_common** crate docs][mysql_common docs] for the list
of types, that implements `Into<Value>`.

##### `Serialized`, `Deserialized`

Wrapper structures for cases, when you need to provide a value for a JSON cell,
or when you need to parse JSON cell as a struct.

```rust
use mysql::*;
use mysql::prelude::*;

/// Serializable structure.
#[derive(Debug, PartialEq, Serialize, Deserialize)]
struct Example {
    foo: u32,
}

// Value::from for Serialized will emit json string.
let value = Value::from(Serialized(Example { foo: 42 }));
assert_eq!(value, Value::Bytes(br#"{"foo":42}"#.to_vec()));

// from_value for Deserialized will parse json string.
let structure: Deserialized<Example> = from_value(value);
assert_eq!(structure, Deserialized(Example { foo: 42 }));
```

#### `QueryResult`

It's an iterator over rows of a query result with support of multi-result sets. It's intended
for cases when you need full control during result set iteration. For other cases
[`Queryalbe`](#queryable) provides a set of methods that will immediately consume
the first result set and drop everything else.

This iterator is lazy so it won't read the result from server until you iterate over it.
MySql protocol is strictly sequential, so `Conn` will be mutably borrowed until the result
is fully consumed.

```rust
use mysql::*;
use mysql::prelude::*;

let mut conn = Conn::new(get_opts())?;

// This query will emit two result sets.
let mut result = conn.query_iter("SELECT 1, 2; SELECT 3, 3.14;")?;

let mut sets = 0;
while let Some(result_set) = result.next_set() {
    let result_set = result_set?;
    sets += 1;

    println!("Result set columns: {:?}", result_set.columns());
    println!(
        "Result set meta: {}, {:?}, {} {}",
        result_set.affected_rows(),
        result_set.last_insert_id(),
        result_set.warnings(),
        result_set.info_str(),
    );

    for row in result_set {
        match sets {
            1 => {
                // First result set will contain two numbers.
                assert_eq!((1_u8, 2_u8), from_row(row?));
            }
            2 => {
                // Second result set will contain a number and a float.
                assert_eq!((3_u8, 3.14), from_row(row?));
            }
            _ => unreachable!(),
        }
    }
}

assert_eq!(sets, 2);
```

### Text protocol

MySql text protocol is implemented in the set of `Queryable::query*` methods. It's useful when your
query doesn't have parameters.

**Note:** All values of a text protocol result set will be encoded as strings by the server,
so `from_value` conversion may lead to additional parsing costs.

Examples:

```rust
let pool = Pool::new(get_opts())?;
let val = pool.get_conn()?.query_first("SELECT POW(2, 16)")?;

// Text protocol returns bytes even though the result of POW
// is actually a floating point number.
assert_eq!(val, Some(Value::Bytes("65536".as_bytes().to_vec())));
```

#### The `TextQuery` trait.

The `TextQuery` trait covers the set of `Queryable::query*` methods from the perspective
of a query, i.e. `TextQuery` is something, that can be performed if suitable connection
is given. Suitable connections are:

*   `&Pool`
*   `Conn`
*   `PooledConn`
*   `&mut Conn`
*   `&mut PooledConn`
*   `&mut Transaction`

The unique characteristic of this trait, is that you can give away the connection
and thus produce `QueryResult` that satisfies `'static`:

```rust
use mysql::*;
use mysql::prelude::*;

fn iter(pool: &Pool) -> Result<impl Iterator<Item=Result<u32>>> {
    let result = "SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3".run(pool)?;
    Ok(result.map(|row| row.map(from_row)))
}

let pool = Pool::new(get_opts())?;

let it = iter(&pool)?;

assert_eq!(it.collect::<Result<Vec<u32>>>()?, vec![1, 2, 3]);
```

### Binary protocol and prepared statements.

MySql binary protocol is implemented in `prep`, `close` and the set of `exec*` methods,
defined on the [`Queryable`](#queryable) trait. Prepared statements is the only way to
pass rust value to the MySql server. MySql uses `?` symbol as a parameter placeholder
and it's only possible to use parameters where a single MySql value is expected.
For example:

```rust
let pool = Pool::new(get_opts())?;
let val = pool.get_conn()?.exec_first("SELECT POW(?, ?)", (2, 16))?;

assert_eq!(val, Some(Value::Float(65536.0)));
```

#### Statements

In MySql each prepared statement belongs to a particular connection and can't be executed
on another connection. Trying to do so will lead to an error. The driver won't tie statement
to its connection in any way, but one can look on to the connection id, containe
 in the `Statement` structure.

```rust
let pool = Pool::new(get_opts())?;

let mut conn_1 = pool.get_conn()?;
let mut conn_2 = pool.get_conn()?;

let stmt_1 = conn_1.prep("SELECT ?")?;

// stmt_1 is for the conn_1, ..
assert!(stmt_1.connection_id() == conn_1.connection_id());
assert!(stmt_1.connection_id() != conn_2.connection_id());

// .. so stmt_1 will execute only on conn_1
assert!(conn_1.exec_drop(&stmt_1, ("foo",)).is_ok());
assert!(conn_2.exec_drop(&stmt_1, ("foo",)).is_err());
```

#### Statement cache

`Conn` will manage the cache of prepared statements on the client side, so subsequent calls
to prepare with the same statement won't lead to a client-server roundtrip. Cache size
for each connection is determined by the `stmt_cache_size` field of the `Opts` structure.
Statements, that are out of this boundary will be closed in LRU order.

Statement cache is completely disabled if `stmt_cache_size` is zero.

**Caveats:**

*   disabled statement cache means, that you have to close statements yourself using
    `Conn::close`, or they'll exhaust server limits/resources;

*   you should be aware of the [`max_prepared_stmt_count`][max_prepared_stmt_count]
    option of the MySql server. If the number of active connections times the value
    of `stmt_cache_size` is greater, than you could receive an error while prepareing
    another statement.

#### Named parameters

MySql itself doesn't have named parameters support, so it's implemented on the client side.
One should use `:name` as a placeholder syntax for a named parameter.

Named parameters may be repeated within the statement, e.g `SELECT :foo, :foo` will require
a single named parameter `foo` that will be repeated on the corresponding positions during
statement execution.

One should use the `params!` macro to build a parameters for execution.

**Note:** Positional and named parameters can't be mixed within the single statement.

Examples:

```rust
let pool = Pool::new(get_opts())?;

let mut conn = pool.get_conn()?;
let stmt = conn.prep("SELECT :foo, :bar, :foo")?;

let foo = 42;

let val_13 = conn.exec_first(&stmt, params! { "foo" => 13, "bar" => foo })?.unwrap();
// Short syntax is available when param name is the same as variable name:
let val_42 = conn.exec_first(&stmt, params! { foo, "bar" => 13 })?.unwrap();

assert_eq!((foo, 13, foo), val_42);
assert_eq!((13, foo, 13), val_13);
```

#### `BinQuery` and `BatchQuery` traits.

`BinQuery` and `BatchQuery` traits covers the set of `Queryable::exec*` methods from
the perspective of a query, i.e. `BinQuery` is something, that can be performed if suitable
connection is given (see [`TextQuery`](#the-textquery-trat) section for the list
of suitable connections).

As with the [`TextQuery`](#the-textquery-trait) you can give away the connection and acquire
`QueryResult` that satisfies `'static`.

`BinQuery` is for prepared statements, and prepared statements requires a set of parameters,
so `BinQuery` is implemented for `QueryWithParams` structure, that can be acquired, using
`WithParams` trait.

Example:

```rust
use mysql::*;
use mysql::prelude::*;

let pool = Pool::new(get_opts())?;

let result: Option<(u8, u8, u8)> = "SELECT ?, ?, ?"
    .with((1, 2, 3)) // <- WithParams::with will construct an instance of QueryWithParams
    .first(&pool)?;  // <- QueryWithParams is executed on the given pool

assert_eq!(result.unwrap(), (1, 2, 3));
```

The `BatchQuery` trait is a helper for batch statement execution. It's implemented for
`QueryWithParams` where parameters is an iterator over parameters:

```rust
use mysql::*;
use mysql::prelude::*;

let pool = Pool::new(get_opts())?;
let mut conn = pool.get_conn()?;

"CREATE TEMPORARY TABLE batch (x INT)".run(&mut conn)?;
"INSERT INTO batch (x) VALUES (?)"
    .with((0..3).map(|x| (x,))) // <- QueryWithParams constructed with an iterator
    .batch(&mut conn)?;         // <- batch execution is preformed here

let result: Vec<u8> = "SELECT x FROM batch".fetch(conn)?;

assert_eq!(result, vec![0, 1, 2]);
```

#### `Queryable`

The `Queryable` trait defines common methods for `Conn`, `PooledConn` and `Transaction`.
The set of basic methods consts of:

*   `query_iter` - basic methods to execute text query and get `QueryRestul`;
*   `prep` - basic method to prepare a statement;
*   `exec_iter` - basic method to execute statement and get `QueryResult`;
*   `close` - basic method to close the statement;

The trait also defines the set of helper methods, that is based on basic methods.
These methods will consume only the firt result set, other result sets will be dropped:

*   `{query|exec}` - to collect the result into a `Vec<T: FromRow>`;
*   `{query|exec}_first` - to get the first `T: FromRow`, if any;
*   `{query|exec}_map` - to map each `T: FromRow` to some `U`;
*   `{query|exec}_fold` - to fold the set of `T: FromRow` to a single value;
*   `{query|exec}_drop` - to immediately drop the result.

The trait also defines the `exec_batch` function, which is a helper for batch statement
execution.

[crate docs]: https://docs.rs/mysql
[mysql_common docs]: https://docs.rs/mysql_common
[max_prepared_stmt_count]: https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_prepared_stmt_count


## Changelog

Available [here](https://github.com/blackbeam/rust-mysql-simple/releases)

## License

Licensed under either of

* Apache License, Version 2.0, ([LICENSE-APACHE]LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0)
* MIT license ([LICENSE-MIT]LICENSE-MIT or https://opensource.org/licenses/MIT)

at your option.

### Contribution

Unless you explicitly state otherwise, any contribution intentionally
submitted for inclusion in the work by you, as defined in the Apache-2.0
license, shall be dual licensed as above, without any additional terms or
conditions.