ndarray 0.16.1

An n-dimensional array for general elements and for numerics. Lightweight array views and slicing; views support chunking and splitting.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# Quickstart tutorial

If you are familiar with Python Numpy, do check out this [For Numpy User Doc](https://docs.rs/ndarray/0.13.0/ndarray/doc/ndarray_for_numpy_users/index.html)
after you go through this tutorial. 

You can use [play.integer32.com](https://play.integer32.com/) to immediately try out the examples.

## The Basics

You can create your first 2x3 floating-point ndarray as such: 
```rust
use ndarray::prelude::*;

fn main() {
    let a = array![
                [1.,2.,3.], 
                [4.,5.,6.],
            ]; 
    assert_eq!(a.ndim(), 2);         // get the number of dimensions of array a
    assert_eq!(a.len(), 6);          // get the number of elements in array a
    assert_eq!(a.shape(), [2, 3]);   // get the shape of array a
    assert_eq!(a.is_empty(), false); // check if the array has zero elements

    println!("{:?}", a);
}
```
This code will create a simple array, then print it to stdout as such:
```
[[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2
```

## Array Creation

### Element type and dimensionality

Now let's create more arrays. A common operation on matrices is to create a matrix full of 0's of certain dimensions. Let's try to do that with dimensions (3, 2, 4) using the `Array::zeros` function:
```rust
use ndarray::prelude::*;
use ndarray::Array;
fn main() {
    let a = Array::zeros((3, 2, 4).f());
    println!("{:?}", a);
}
```
Unfortunately, this code does not compile.
```
|    let a = Array::zeros((3, 2, 4).f());
|        -   ^^^^^^^^^^^^ cannot infer type for type parameter `A`
```
Indeed, note that the compiler needs to infer the element type and dimensionality from context only. In this 
case the compiler does not have enough information. To fix the code, we can explicitly give the element type through turbofish syntax, and let it infer the dimensionality type:

```rust
use ndarray::prelude::*;
use ndarray::Array;
fn main() {
  let a = Array::<f64, _>::zeros((3, 2, 4).f());
  println!("{:?}", a);
}
```
This code now compiles to what we wanted:
```
[[[0.0, 0.0, 0.0, 0.0],
  [0.0, 0.0, 0.0, 0.0]],

 [[0.0, 0.0, 0.0, 0.0],
  [0.0, 0.0, 0.0, 0.0]],

 [[0.0, 0.0, 0.0, 0.0],
  [0.0, 0.0, 0.0, 0.0]]], shape=[3, 2, 4], strides=[1, 3, 6], layout=F (0x2), const ndim=3
```

We could also specify its dimensionality explicitly `Array::<f64, Ix3>::zeros(...)`, with`Ix3` standing for 3D array type. Phew! We achieved type safety. If you tried changing the code above to `Array::<f64, Ix3>::zeros((3, 2, 4, 5).f());`, which is not of dimension 3 anymore, Rust's type system would gracefully prevent you from compiling the code.

### Creating arrays with different initial values and/or different types

The [`from_elem`](http://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html#method.from_elem) method allows initializing an array of given dimension to a specific value of any type:

```rust
use ndarray::{Array, Ix3};
fn main() {
  let a = Array::<bool, Ix3>::from_elem((3, 2, 4), false);
  println!("{:?}", a);
}
```

### Some common array initializing helper functions
`linspace` - Create a 1-D array with 11 elements with values 0., …, 5.
```rust
use ndarray::prelude::*;
use ndarray::{Array, Ix3};
fn main() {
  let a = Array::<f64, _>::linspace(0., 5., 11);
  println!("{:?}", a);
}
```
The output is:
```
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0], shape=[11], strides=[1], layout=C | F (0x3), const ndim=1
```

Common array initializing methods include [`range`](https://docs.rs/ndarray/0.13.0/ndarray/struct.ArrayBase.html#method.range), [`logspace`](https://docs.rs/ndarray/0.13.0/ndarray/struct.ArrayBase.html#method.logspace), [`eye`](https://docs.rs/ndarray/0.13.0/ndarray/struct.ArrayBase.html#method.eye), [`ones`](https://docs.rs/ndarray/0.13.0/ndarray/struct.ArrayBase.html#method.ones)...

## Basic operations

Basic operations on arrays are all element-wise; you need to use specific methods for operations such as matrix multiplication (see later section).
```rust
use ndarray::prelude::*;
use ndarray::Array;
use std::f64::INFINITY as inf;

fn main() {
    let a = array![
                [10.,20.,30., 40.,], 
            ];
    let b = Array::range(0., 4., 1.);  // [0., 1., 2., 3, ]

    assert_eq!(&a + &b, array![[10., 21., 32., 43.,]]);  // Allocates a new array. Note the explicit `&`.
    assert_eq!(&a - &b, array![[10., 19., 28., 37.,]]);
    assert_eq!(&a * &b, array![[0., 20., 60., 120.,]]);
    assert_eq!(&a / &b, array![[inf, 20., 15., 13.333333333333334,]]);
}
```


Note that (for any binary operator `@`):
* `&A @ &A` produces a new `Array`
* `B @ A` consumes `B`, updates it with the result, and returns it
* `B @ &A` consumes `B`, updates it with the result, and returns it
* `C @= &A` performs an arithmetic operation in place

Try removing all the `&` sign in front of `a` and `b` in the last example: it will not compile anymore because of those rules.

For more info checkout https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html#arithmetic-operations



Some operations have `_axis` appended to the function name: they generally take in a parameter of type `Axis` as one of their inputs,
such as `sum_axis`:

```rust
use ndarray::{aview0, aview1, arr2, Axis};

fn main() {
    let a = arr2(&[[1., 2., 3.],
                   [4., 5., 6.]]);
    assert!(
        a.sum_axis(Axis(0)) == aview1(&[5., 7., 9.]) &&
        a.sum_axis(Axis(1)) == aview1(&[6., 15.]) &&

        a.sum_axis(Axis(0)).sum_axis(Axis(0)) == aview0(&21.) &&
        a.sum_axis(Axis(0)).sum_axis(Axis(0)) == aview0(&a.sum())
    );
}
```

### Matrix product

```rust
use ndarray::prelude::*;
use ndarray::Array;

fn main() {
    let a = array![
                [10.,20.,30., 40.,], 
            ];
    let b = Array::range(0., 4., 1.);     // b = [0., 1., 2., 3, ]
    println!("a shape {:?}", &a.shape());
    println!("b shape {:?}", &b.shape());
    
    let b = b.into_shape_with_order((4,1)).unwrap(); // reshape b to shape [4, 1]
    println!("b shape after reshape {:?}", &b.shape());
    
    println!("{}", a.dot(&b));            // [1, 4] x [4, 1] -> [1, 1] 
    println!("{}", a.t().dot(&b.t()));    // [4, 1] x [1, 4] -> [4, 4]
}
```
The output is:
```
a shape [1, 4]
b shape [4]
b shape after reshape [4, 1]
[[200]]
[[0, 10, 20, 30],
 [0, 20, 40, 60],
 [0, 30, 60, 90],
 [0, 40, 80, 120]]
```

## Indexing, Slicing and Iterating
One-dimensional arrays can be indexed, sliced and iterated over, much like `numpy` arrays

```rust
use ndarray::prelude::*;
use ndarray::Array;

fn main() {
    let a = Array::range(0., 10., 1.);

    let mut a = a.mapv(|a: f64| a.powi(3));  // numpy equivlant of `a ** 3`; https://doc.rust-lang.org/nightly/std/primitive.f64.html#method.powi

    println!("{}", a);

    println!("{}", a[[2]]);
    println!("{}", a.slice(s![2]));

    println!("{}", a.slice(s![2..5]));

    a.slice_mut(s![..6;2]).fill(1000.);  // numpy equivlant of `a[:6:2] = 1000`
    println!("{}", a);

    for i in a.iter() {
        print!("{}, ", i.powf(1./3.))
    }
}
```
The output is:
```
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
8
8
[8, 27, 64]
[1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729]
9.999999999999998, 1, 9.999999999999998, 3, 9.999999999999998, 4.999999999999999, 5.999999999999999, 6.999999999999999, 7.999999999999999, 8.999999999999998,
```

For more info about iteration see [Loops, Producers, and Iterators](https://docs.rs/ndarray/0.13.0/ndarray/struct.ArrayBase.html#loops-producers-and-iterators)

Let's try a iterating over a 3D array with elements of type `isize`. This is how you index it: 
```rust
use ndarray::prelude::*;

fn main() {
    let a = array![
                    [[  0,  1,  2],         // a 3D array  2 x 2 x 3
                     [ 10, 12, 13]],

                    [[100,101,102],
                     [110,112,113]]
                ];

    let a = a.mapv(|a: isize| a.pow(1));  // numpy equivalent of `a ** 1`; 
                                          // This line does nothing except illustrating mapv with isize type 
    println!("a -> \n{}\n", a);

    println!("`a.slice(s![1, .., ..])` -> \n{}\n", a.slice(s![1, .., ..]));

    println!("`a.slice(s![.., .., 2])` -> \n{}\n", a.slice(s![.., .., 2]));

    println!("`a.slice(s![.., 1, 0..2])` -> \n{}\n", a.slice(s![.., 1, 0..2]));

    println!("`a.iter()` ->");
    for i in a.iter() {
        print!("{}, ", i)  // flat out to every element
    }

    println!("\n\n`a.outer_iter()` ->");
    for i in a.outer_iter() {
        print!("row: {}, \n", i)  // iterate through first dimension
    }
}
```
The output is:
```
a -> 
[[[0, 1, 2],
  [10, 12, 13]],

 [[100, 101, 102],
  [110, 112, 113]]]

`a.slice(s![1, .., ..])` -> 
[[100, 101, 102],
 [110, 112, 113]]

`a.slice(s![.., .., 2])` -> 
[[2, 13],
 [102, 113]]

`a.slice(s![.., 1, 0..2])` -> 
[[10, 12],
 [110, 112]]

`a.iter()` ->
0, 1, 2, 10, 12, 13, 100, 101, 102, 110, 112, 113, 

`a.outer_iter()` ->
row: [[0, 1, 2],
 [10, 12, 13]], 
row: [[100, 101, 102],
 [110, 112, 113]], 
```

## Shape Manipulation

### Changing the shape of an array
The shape of an array can be changed with the `into_shape_with_order` or `to_shape` method.

````rust
use ndarray::prelude::*;
use ndarray::Array;
use std::iter::FromIterator;
// use ndarray_rand::RandomExt;
// use ndarray_rand::rand_distr::Uniform;

fn main() {
    // Or you may use ndarray_rand crate to generate random arrays
    // let a = Array::random((2, 5), Uniform::new(0., 10.));
    
    let a = array![
        [3., 7., 3., 4.],
        [1., 4., 2., 2.],
        [7., 2., 4., 9.]];
        
    println!("a = \n{:?}\n", a);
    
    // use trait FromIterator to flatten a matrix to a vector
    let b = Array::from_iter(a.iter());
    println!("b = \n{:?}\n", b);
    
    let c = b.into_shape_with_order([6, 2]).unwrap(); // consume b and generate c with new shape
    println!("c = \n{:?}", c);
}
````
The output is:
```
a = 
[[3.0, 7.0, 3.0, 4.0],
 [1.0, 4.0, 2.0, 2.0],
 [7.0, 2.0, 4.0, 9.0]], shape=[3, 4], strides=[4, 1], layout=C (0x1), const ndim=2

b = 
[3.0, 7.0, 3.0, 4.0, 1.0, 4.0, 2.0, 2.0, 7.0, 2.0, 4.0, 9.0], shape=[12], strides=[1], layout=C | F (0x3), const ndim=1

c = 
[[3.0, 7.0],
 [3.0, 4.0],
 [1.0, 4.0],
 [2.0, 2.0],
 [7.0, 2.0],
 [4.0, 9.0]], shape=[6, 2], strides=[2, 1], layout=C (0x1), const ndim=2
```

### Stacking/concatenating together different arrays

The `stack!` and `concatenate!` macros are helpful for stacking/concatenating
arrays. The `stack!` macro stacks arrays along a new axis, while the
`concatenate!` macro concatenates arrays along an existing axis:

```rust
use ndarray::prelude::*;
use ndarray::{concatenate, stack, Axis};

fn main() {
    let a = array![
        [3., 7., 8.],
        [5., 2., 4.],
    ];

    let b = array![
        [1., 9., 0.],
        [5., 4., 1.],
    ];

    println!("stack, axis 0:\n{:?}\n", stack![Axis(0), a, b]);
    println!("stack, axis 1:\n{:?}\n", stack![Axis(1), a, b]);
    println!("stack, axis 2:\n{:?}\n", stack![Axis(2), a, b]);
    println!("concatenate, axis 0:\n{:?}\n", concatenate![Axis(0), a, b]);
    println!("concatenate, axis 1:\n{:?}\n", concatenate![Axis(1), a, b]);
}
```
The output is:
```
stack, axis 0:
[[[3.0, 7.0, 8.0],
  [5.0, 2.0, 4.0]],

 [[1.0, 9.0, 0.0],
  [5.0, 4.0, 1.0]]], shape=[2, 2, 3], strides=[6, 3, 1], layout=Cc (0x5), const ndim=3

stack, axis 1:
[[[3.0, 7.0, 8.0],
  [1.0, 9.0, 0.0]],

 [[5.0, 2.0, 4.0],
  [5.0, 4.0, 1.0]]], shape=[2, 2, 3], strides=[3, 6, 1], layout=c (0x4), const ndim=3

stack, axis 2:
[[[3.0, 1.0],
  [7.0, 9.0],
  [8.0, 0.0]],

 [[5.0, 5.0],
  [2.0, 4.0],
  [4.0, 1.0]]], shape=[2, 3, 2], strides=[1, 2, 6], layout=Ff (0xa), const ndim=3

concatenate, axis 0:
[[3.0, 7.0, 8.0],
 [5.0, 2.0, 4.0],
 [1.0, 9.0, 0.0],
 [5.0, 4.0, 1.0]], shape=[4, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2

concatenate, axis 1:
[[3.0, 7.0, 8.0, 1.0, 9.0, 0.0],
 [5.0, 2.0, 4.0, 5.0, 4.0, 1.0]], shape=[2, 6], strides=[1, 2], layout=Ff (0xa), const ndim=2
```

### Splitting one array into several smaller ones

More to see here [ArrayView::split_at](https://docs.rs/ndarray/latest/ndarray/type.ArrayView.html#method.split_at)
```rust
use ndarray::prelude::*;
use ndarray::Axis;

fn main() {

    let a = array![
        [6., 7., 6., 9., 0., 5., 4., 0., 6., 8., 5., 2.],
        [8., 5., 5., 7., 1., 8., 6., 7., 1., 8., 1., 0.]];
    
    let (s1, s2) = a.view().split_at(Axis(0), 1);
    println!("Split a from Axis(0), at index 1:");
    println!("s1  = \n{}", s1);
    println!("s2  = \n{}\n", s2);
    
    
    let (s1, s2) = a.view().split_at(Axis(1), 4);
    println!("Split a from Axis(1), at index 4:");
    println!("s1  = \n{}", s1);
    println!("s2  = \n{}\n", s2);
}
```
The output is:
```
Split a from Axis(0), at index 1:
s1  = 
[[6, 7, 6, 9, 0, 5, 4, 0, 6, 8, 5, 2]]
s2  = 
[[8, 5, 5, 7, 1, 8, 6, 7, 1, 8, 1, 0]]

Split a from Axis(1), at index 4:
s1  = 
[[6, 7, 6, 9],
 [8, 5, 5, 7]]
s2  = 
[[0, 5, 4, 0, 6, 8, 5, 2],
 [1, 8, 6, 7, 1, 8, 1, 0]]

```

## Copies and Views
### View, Ref or Shallow Copy

Rust has ownership, so we cannot simply update an element of an array while we have a shared view of it. This brings guarantees & helps having more robust code.
```rust
use ndarray::prelude::*;
use ndarray::{Array, Axis};

fn main() {

    let mut a = Array::range(0., 12., 1.).into_shape_with_order([3 ,4]).unwrap();
    println!("a = \n{}\n", a);
    
    {
        let (s1, s2) = a.view().split_at(Axis(1), 2);
        
        // with s as a view sharing the ref of a, we cannot update a here
        // a.slice_mut(s![1, 1]).fill(1234.);
        
        println!("Split a from Axis(0), at index 1:");
        println!("s1  = \n{}", s1);
        println!("s2  = \n{}\n", s2);
    }
    
    // now we can update a again here, as views of s1, s2 are dropped already
    a.slice_mut(s![1, 1]).fill(1234.);
    
    let (s1, s2) = a.view().split_at(Axis(1), 2);
    println!("Split a from Axis(0), at index 1:");
    println!("s1  = \n{}", s1);
    println!("s2  = \n{}\n", s2);
}
```
The output is:
```
a = 
[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]

Split a from Axis(0), at index 1:
s1  = 
[[0, 1],
 [4, 5],
 [8, 9]]
s2  = 
[[2, 3],
 [6, 7],
 [10, 11]]

Split a from Axis(0), at index 1:
s1  = 
[[0, 1],
 [4, 1234],
 [8, 9]]
s2  = 
[[2, 3],
 [6, 7],
 [10, 11]]
```

### Deep Copy
As the usual way in Rust, a `clone()` call will
make a copy of your array:
```rust
use ndarray::prelude::*;
use ndarray::Array;

fn main() {

    let mut a = Array::range(0., 4., 1.).into_shape_with_order([2 ,2]).unwrap();
    let b = a.clone();
    
    println!("a = \n{}\n", a);
    println!("b clone of a = \n{}\n", a);
    
    a.slice_mut(s![1, 1]).fill(1234.);
    
    println!("a updated...");
    println!("a = \n{}\n", a);
    println!("b clone of a = \n{}\n", b);
}
```

The output is:
```
a = 
[[0, 1],
 [2, 3]]

b clone of a = 
[[0, 1],
 [2, 3]]

a updated...
a = 
[[0, 1],
 [2, 1234]]

b clone of a = 
[[0, 1],
 [2, 3]]
```

Notice that using `clone()` (or cloning) an `Array` type also copies the array's elements. It creates an independently owned array of the same type.

Cloning an `ArrayView` does not clone or copy the underlying elements - it only clones the view reference (as it happens in Rust when cloning a `&` reference).

## Broadcasting

Arrays support limited broadcasting, where arithmetic operations with array operands of different sizes can be carried out by repeating the elements of the smaller dimension array. 

```rust
use ndarray::prelude::*;

fn main() {
    let a = array![
        [1., 1.], 
        [1., 2.], 
        [0., 3.], 
        [0., 4.]];

    let b = array![[0., 1.]];

    let c = array![
        [1., 2.], 
        [1., 3.], 
        [0., 4.], 
        [0., 5.]];
    
    // We can add because the shapes are compatible even if not equal.
    // The `b` array is shape 1 × 2 but acts like a 4 × 2 array.
    assert!(c == a + b);
}
```

See [.broadcast()](https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html#method.broadcast) for a more detailed description.

And here is a short example of it:
```rust
use ndarray::prelude::*;

fn main() {
    let a = array![
        [1., 2.],
        [3., 4.],
    ];
    
    let b =  a.broadcast((3, 2, 2)).unwrap();
    println!("shape of a is {:?}", a.shape());
    println!("a is broadcased to 3x2x2 = \n{}", b);
}
```
The output is:
```
shape of a is [2, 2]
a is broadcased to 3x2x2 = 
[[[1, 2],
  [3, 4]],

 [[1, 2],
  [3, 4]],

 [[1, 2],
  [3, 4]]]
```

## Want to learn more?
Please checkout these docs for more information
* [`ArrayBase` doc page]https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html
* [`ndarray` for `numpy` user doc page]https://docs.rs/ndarray/latest/ndarray/doc/ndarray_for_numpy_users/index.html