permutator 0.4.3

Get a lexicographic cartesian product and lexicographic permutation at any specific index from data. Generate complete lexicographic cartesian product from single or multiple set of data. Generate complete lexicographic combination from data. Generate non-lexicographic permutation and k-permutation.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# Permutator
It provides multiple way to get permutation of data.
## TLDR
Easiest generic use case
```Rust
use permutator::{CartesianProduct, Combination, Permutation};
let domains : &[&[i32]] = &[&[1, 2], &[3, 4, 5], &[6], &[7, 8], &[9, 10, 11]];
domains.cart_prod().for_each(|cp| {
    // each cp will be &[&i32] with length equals to domains.len() which in this case 5

    // It's k-permutation of size 3 over data.
    cp.combination(3).for_each(|mut c| { // need mut
        // each `c` is not &[&&i32]
        // print the first 3-combination over data
        // No longer need this line from verion 0.4.0 onward
        // println!("{:?}", c);

        // start permute the 3-combination
        c.permutation().for_each(|p| {
            // each `p` is not &[&&&i32]
            // print each permutation of the 3-combination.
            println!("{:?}", p);
        });

        // It'll print the last 3-permutation again because permutation permute the value in place.
        println!("{:?}", c);
    })
});
```
Notice that each nested level get deeper reference.
If such behavior is undesired, use `copy` module.
Here's an example:
```Rust
use permutator::copy::{CartesianProduct, Combination, Permutation};
let domains : &[&[i32]] = &[&[1, 2], &[3, 4, 5], &[6], &[7, 8], &[9, 10, 11]];
domains.cart_prod().for_each(|cp| {
    // each cp will be &[i32] with length equals to domains.len() which in this case 5

    // It's k-permutation of size 3 over data.
    cp.combination(3).for_each(|mut c| { // need mut
        // each `c` is not &[i32]
        // print the first 3-combination over data
        // No longer need this line from verion 0.4.0 onward
        // println!("{:?}", c);

        // start permute the 3-combination
        c.permutation().for_each(|p| {
            // each `p` is not &[i32]
            // print each permutation of the 3-combination.
            println!("{:?}", p);
        });

        // It'll print the last 3-permutation again because permutation permute the value in place.
        println!("{:?}", c);
    })
});
```
## The `copy` module
This crate split into two modules. One is root module which can be used in most of the case. Another is `copy` module which require that the type implement `Copy` trait. The root module return value as a collection of `&T`, except all Heap permutaiton family. The `copy` module always return value as a collection of `T`. There's no Heap permutation in `copy` module because it did permutation in place. There's no copy nor create any reference.
## Get a permutation at specific point, not an iterator style.
It crate provides 2 functions to get a cartesian product or k-permutation:
- get_cartesian_for
- get_permutation_for
It perform mathematically calculation and return the result at that position. It doesn't skip the iteration. It useful when the domains is very large. Otherwise, simply skip the iteration may be faster. For example, in uncontrol test environment, heap_permutation function compile with --release flag can permute about 88 million permutations per second.

This crate also provides utilities functions like:
- get_cartesian_size
- get_permutation_size
## Get a cartesian product over a set itself multiple times
There are two distinct implementation to get cartesian product.
- Iterator that return product
- Function that call callback function to return product
### Iterator 
This crate provides `SelfCartesianProductIterator`, `SelfCartesianProductCellIter`, and `SelfCartesianProductRefIter` structs that implement `Iterator`, `IteratorReset`, `ExactSizeIterator` traits. Each struct serves different use cases:-
- `SelfCartesianProductIterator` can be used in any case that performance is least concern.
- `SelfCartesianProductCellIter` can be used in case performance is important as well as safety.
- `SelfCartesianProductRefIter` can be used in case performance is critical and safety will be handle by caller.
Every structs implements `IteratorReset` trait.
- use `reset` function instead of creating a new Iterator everytime you need to re-iterate.
### Trait
This crate provides `CartesianProduct` trait in both root module and `copy` module which add function `cart_prod` that return an Iterator to generate a `Cartesian Product` over a set itself multiple times. The types that currently support are:
- `(&'a [T], usize)` - Generate cartesian product over 'first paramter' for 'second paramater' times.
- `(&'a [T], usize, Rc<RefCell<&'a mut [&'a T]>>)` - Similar to above but keep overwrite the product into 'third parameter'. **This type require trait from root module.**
- `(&'a [T], usize, *mut [&'a T])` - Similar to above but use unsafe pointer to store value. **This type require trait from root module.** Each type above return different Iterator. For example `(&'a [T], usize)` return `SelfCartesianProductIterator` but on `(&'a [T], usize, *mut [&'a T])` return `SelfCartesianProductRefIter`.
- `(&'a [T], usize, Rc<RefCell<&'a mut [T]>>)` - Similar to above but keep overwrite the product into 'third parameter'. **This type require trait from `copy` module.**
- `(&'a [T], usize, *mut [T])` - Similar to above but use unsafe pointer to store value. **This type require trait from `copy` module.**
Each type above return different Iterator. For example `(&'a [T], usize)` return `copy::SelfCartesianProductIterator` but on `(&'a [T], usize, *mut [T])` return `copy::SelfCartesianProductRefIter`.
### Callback function
This crate provides 4 functions that serve different usecase.
- `self_cartesian_product` function that return product as callback parameter
- `self_cartesian_product_cell` function that return product into Rc<RefCell<>> given in function parameter
- `self_cartesian_product_sync` function that return product into Arc<RwLock<>> given in function parameter
- `unsafe_self_cartesian_product` unsafe function that return product into mutable pointer given in function parameter
## Get a cartesian product over multiple sets
There are three distinct implementation to get cartesian product.
- Iterator that return product
- Function that call callback function to return product
- `CartesianProduct` trait that add `cart_prod` function to `&[&[T]]`, `(&[&[T]], Rc<RefCell<&mut[&T]>>)`
### Iterator 
This crate provides `CartesianProductIterator`, `CartesianProductCellIter`, and `CartesianProductRefIter` structs that implement
`Iterator`, `IteratorReset`, `ExactSizeIterator` traits. Each struct serves different use cases:-
- `CartesianProductIterator` can be used in any case that performance is least concern.
- `CartesianProductCellIter` can be used in case performance is important as well as safety.
- `CartesianProductRefIter` can be used in case performance is critical and safety will be handle by caller.
Every structs implements `IteratorReset` trait.
- use `reset` function instead of creating a new Iterator everytime you need to re-iterate.
### Trait
This crate provides `CartesianProduct` trait in both root module and `copy` module. It is implemented on various types such as generic slice of slices, generic Vec of slices, tuple of `(&'a [&'a [T]], Rc<RefCell<&'a mut[&'a T]>>)`, and tuple of `(&'a [&'a [T]], *mut [&'a T])`.
It add `cart_prod()` function to it and return required iterator based on type of data. For example on generic Vec of slices return `CartesianProductIterator` but on `(&'a [&'a [T]], *mut [&'a T])` return `CartesianProductRefIter`.
### Callback function
This crate provides 4 similar functions on 2 modules that serve different usecase.
These 4 functions in root module:
- `cartesian_product` function that return product as callback parameter
- `cartesian_product_cell` function that return product into `Rc<RefCell<>>` given in function parameter
- `cartesian_product_sync` function that return product into `Arc<RwLock<>>` given in function parameter
- `unsafe_cartesian_product` unsafe function that return product into mutable pointer given in function 
and all 4 functions in `copy` module which do exactly the same except that each element is `T` rather than `&T`
## Get a combination from data
There are three distinct implementation to get k-combinations of n set.
- Iterator that return each combination on each iteration
- Trait that add function to slice, `Vec`, `Rc<RefCell<&mut[&T]>>`, etc.
- Function that call callback function to return product
### Iterator
This crate provides `LargeCombinationIterator`, `LargeCombinationCellIter`, and `LargeCombinationRefIter` structs in two modules that implement `Iterator`, `IteratorReset`, and `ExactSizeIterator` traits. Each struct serves different use cases:-
- `LargeCombinationIterator` can be used in any case that performance is least concern.
- `LargeCombinationCellIter` can be used in case performance is important as well as safety.
- `LargeCombinationRefIter` can be used in case performance is critical and safety will be handle by caller.
All 3 structs in two modules are only different on the return type. The root module has `&T` element in result while `copy` module has copied `T` element in result.
Every structs implements `IteratorReset` trait.
- use `reset` function instead of creating a new Iterator everytime you need to re-iterate.
### Trait
This crate provides `Combination` trait in both root module and `copy` module. It provides basic implementation on various types such as generic slice, generic `Vec`, tuple of `(&'a [T], Rc<RefCell<&'a mut[&'a T]>>)`, and tuple of `(&'a [T], * mut[&'a T])`.
It add `combination(usize)` function to it and return required iterator based on type of data. For example on generic Vec return `LargeCombinationIterator` but on `(&'a [T], * mut[&'a T])` return `LargeCombinationRefIter`.
### Callback function
This crate provide 4 functions in 2 modules that serve different usecase.
- `large_combination` function that return product as callback parameter
- `large_combination_cell` function that return product into `Rc<RefCell<>>` given in function parameter
- `large_combination_sync` function that return product into `Arc<RwLock<>>` given in function parameter
- `unsafe_large_combination` unsafe function that return product into mutable pointer given in function parameter
The different between root module and `copy` module is that the product contains `&T` in root module while in `copy` module contains copied `T`.
## Get a permutation from data
This crate provide two different algorithms. One generate lexicographically ordered permutation. Another generate non-lexicographically ordered permutation but faster.

There are three distinct implementation to get permutation.
- Iterator that do permutation on data
- Trait that add function to slice, Vec, etc.
- Function that call callback function to return each permutation
### Iterator
This crate provides `HeapPermutationIterator`, `HeapPermutationCellIter`, `HeapPermutationRefIter`, `XPermutationIterator`, `XPermutationCellIter`, and `XPermutationRefIter` structs in both root module and `copy` module that implement `Iterator`, `IteratorReset`, `ExactSizeIterator` traits. Each struct serves different use cases:-
- `HeapPermutationIterator` can be used in any case that order is not important and performance is least concern. This iterator doesn't return original value as first value.
- `XPermutationIterator` can be used in any case that order is important and performance is least concern.
- `HeapPermutationCellIter` can be used in case that order is not important and performance is important as well as safety. This iterator doesn't return original value as first value.
- `XPermutationCellIter` can be used in case that order is important and performance is important as well as safety.
- `HeapPermutationRefIter` can be used in case that order is not important, performance is critical and safety will be handle by caller. This iterator doesn't return original value as first value.
- `XPermutationRefIter` can be used in case that order is important, performance is critical and safety will be handle by caller.
The different between root module and `copy` module is that in `copy` module type `T` need to implement `Copy` trait.
Every structs implements `IteratorReset` trait.
- use `reset` function instead of creating a new Iterator everytime you need to re-iterate.
### Trait
This crate provides `Permutation` trait in root module and `copy` module. It provide basic implementation various types such as generic slice, generic Vec, tuple of `(&'a mut[T], Rc<RefCell<&'a mut[T]>>`, and more type but used for [k-permutation](#get-a-k-permutation-from-data).
It add `permutation()` function to it and return required iterator based on type of data. For example on generic Vec return `HeapPermutationIterator` but on `(&'a mut [T], Rc<RefCell<&'a mut[T]>>)` return `HeapPermutationCellIter`.
The trait never return lexicographically ordered permutation iterator.
It add one more benefit since version 0.4.0. Unlike constructing an iterator, it return a chained iterator. The chained is just a two iterator chained together. The first iterator return only one value, the original value. The second iterator return all the rest permutation.
### Callback function
This crate provides 3 functions in root module that return non-lexicographically ordered result which serve different usecase.
- `heap_permutation` function that return product as callback parameter
- `heap_permutation_cell` function that return product into Rc<RefCell<>> given in function parameter
- `heap_permutation_sync` function that return product into Arc<RwLock<>> given in function parameter

~~**There is no heap permutation function family in `copy` module.**~~

**Since version 0.4.0 onward all heap permutation family including all Iterator style isn't in `copy` module.**  This is because Iterator need to return owned value and `HeapPermutationIterator` use `T` directly, not `&T`, so `T` need to implement `Clone`. This make implementation in `copy` module duplicate of the one in root module.

This crate provides 4 functions in both root module and `copy` module that return lexicographically ordered result which serve different usecase.
- `x_permutation` function that return lexicographically ordered product as callback parameter
- `x_permutation_cell` function that return lexicographically ordered product into Rc<RefCell<>> given in function parameter
- `x_permutation_sync` function that return lexicographically ordered product into Arc<RwLock<>> given in function parameter
- `unsafe_x_permutation` unsafe function that return product into mutable pointer given in function parameter
## Get a k-permutation from data
There are three implementation to get k-permutations.
- Iterator that return product
- Trait that add functionality to some specific tuple.
- Function that call callback function to return product
### Iterator
This crate provides `KPermutationIterator`, `KPermutationCellIter`, and `KPermutationRefIter` structs in root module and `copy` module that implement `Iterator`, `IteratorReset`, `ExactSizeIterator` traits. Each struct serves different use cases:-
- `KPermutationIterator` can be used in any case that performance is least concern.
- `KPermutationCellIter` can be used in case performance is important as well as safety.
- `KPermutationRefIter` can be used in case performance is critical and safety will be handle by caller.
The different between root module produces collection of `&T` but `copy` module produces collection of copied `T`
Every structs implements `IteratorReset` trait.
- use `reset` function instead of creating a new Iterator everytime you need to re-iterate.
### Trait
This crate provides `Permutation` trait in root module that can be used to perform k-permutation on tuple of `(&'a [T], usize)`, tuple of `(&'a [T], usize, Rc<RefCell<&'a mut [&'a T]>>)`, and `(&'a [T], usize, *mut [&'a T])` to create different type of iterator.
The `Permutation` trait in `copy` module can be used to perform k-permutation on tuple of `(&'a [T], usize)`, tuple of `(&'a [T], usize, Rc<RefCell<&'a mut [T]>>)`, and `(&'a [T], usize, *mut [T])` to create different type of iterator.
It add `permutation()` function to it and return required iterator based on type of data. For example on (&'a [T], usize) return `KPermutationIterator` but on `(&'a [T], usize, *mut [&'a T])` return `KPermutationRefIter`.
### Callback function
This crate provide 4 functions in both root module and `copy` module that serve different usecase.
- `k_permutation` function that return product as callback parameter
- `k_permutation_cell` function that return product into Rc<RefCell<>> given in function parameter
- `k_permutation_sync` function that return product into Arc<RwLock<>> given in function parameter
- `unsafe_k_permutation` unsafe function that return product into mutable pointer given in function parameter
The different between root module and `copy` module is that the root module return a collection of `&T` while the `copy` module return collection of `T`
## Notes
### Struct with `RefIter` and `CellIter` suffix return empty Item on each Iteration
Struct like `CartesianProductIterator`, `CombinationIterator`, `HeapPermutationIterator`, `KPermutationIterator` return fresh new Vec on each iteration. All other structs that have other way to return value will return empty tuple on each iteration. For example, `CartesianProductCellIter`, `CombinationRefIter`, `HeapPermutationCellIter`, and `KPermutationRefIter` all return empty tuple on each iteration. It return result via parameter specified when instantiate an object. For example, method `new` on `CartesianProductCellIter` in root module requires `Rc<RefCell<&mut [&T]>>` parameter which will be used to store each cartesian product from each iteration.
It's important to keep in mind that these struct with suffix `RefIter` and `CellIter` **overwrite** the result of previous iteration on every iteration. If every result from each iteration need to be kept, consider using non-suffix version. For example, instead of using `KPermutationRefIter` and clone/copy every result into Vec, consider using `KPermutationIterator` instead.
### Performance concern
- For primitive data type, module `copy` and root module performance is roughly equivalent.
- For complex data type, module `copy` performance will depend on the implementation of `Copy` trait.
- Generally speaking, the standard callback function give highest throughput but the return result is a borrowed data with lifetime valid only in that callback scope.
- The crate provides three built-in methods to share result.
    1. callback function with "_cell" suffix.
    2. A struct with `CellIter` and `RefIter` suffix.
    3. Iterator that return an owned value.
The callback with "_cell" suffix way is about 10%-20% slower than using `CellIter` suffix method.
The return owned value method is slowest but most versatile. It's about 700%-1000% slower than using
`CellIter` suffix object. However, it is still faster than using standard callback function then
convert it to owned value to share result.
- This crate provides two built-in methods to send result to other threads.
    1. callback function with "_sync" suffix.
    2. Iterator that return an owned value.
The fastest and safest way to send result to other threads is to use an Iterator that return owned value. It's about 50%-200% faster than using callback function with "_sync" suffix.
### Mutating result is dangerous
Most of sharing result use interior mutability so that the function/struct only borrow the sharing result. It'll mutably borrow only when it's going to mutate result and drop the borrow immediately before calling a callback or return result from iteration. This mean that the result is also mutable on user side. However, doing so may result in undesired behavior. For example: `heap_permutation_cell` function swap a pair of element inside `Rc<RefCell<>>` in place. If user swap value inside result, some permutation return in the future may duplicate with the already return one. If user remove some value inside result, it'll panic because inside the `heap_permutation_cell` function unrecognize the size changed.
### Send result to other thread is complicated
This crate provides two built-in methods to send result across thread. The two usecase is strongly
against each other in term of performance. The callback with "_sync" suffix store borrowed result into Arc<RwLock<>> which reduce the cost of allocating additional memory and copy/clone the result into it. Each thread that read borrowed content may need additional overhead of communication especially if it cannot miss any of the data send to it. In such case, the following scenario is applied
1. The function generate new result
2. The function send notification via channel to every threads that new result is available.
3. The function block until every thread send notification back that they are all done with the data.

Another way is to use Iterator that return an owned value then clone that value on each thread.
This is much simpler to implement but require more memory. It'll simplify the scenario above to:
1. The iterator return new result.
2. It send notification with new data via channel to every threads.
The performance observed in uncontrolled test environment show that the iterator way
is faster than the callback by at least 50%.
### Unsafe way is fastest and hardest
It's because all "unsafe_" prefix function and struct with `RefIter` suffix return result throught mutable pointer that make it has lowest cost to send result back. It leave everything else to user to do the work. To use it, make sure that the memory is return when it no longer use, synchronization, initialization is properly done. The original variable owner outlive both user and generator.
# Example
## Get a permutation at specific point examples
To get into 'n' specific lexicographic permutation, 
```Rust
use permutator::get_cartesian_size;

get_cartesian_size(3, 2); // return 9.
get_cartesian_size(3, 3); // return 27.

use permutator::get_cartesian_for;

let nums = [1, 2, 3];
get_cartesian_for(&nums, 2, 0); // Return Ok([1, 1])
get_cartesian_for(&nums, 2, 3); // Return Ok([2, 1])
get_cartesian_for(&nums, 2, 8); // Return Ok([3, 3])
get_cartesian_for(&nums, 2, 9); // Return Err("Parameter `i` is out of bound")
get_cartesian_for(&nums, 4, 0); // Return Err("Parameter `degree` cannot be larger than size of objects")

use permutator::get_permutation_size;

get_permutation_size(3, 2); // return = 6
get_permutation_size(4, 2); // return = 12

use permutator::get_permutation_for;

let nums = [1, 2, 3, 4];
get_permutation_for(&nums, 2, 0); // return Result([1, 2])
get_permutation_for(&nums, 3, 0); // return Result([1, 2, 3])
get_permutation_for(&nums, 2, 5); // return Result([2, 4])
get_permutation_for(&nums, 2, 11); // return Result([4, 3])
get_permutation_for(&nums, 2, 12); // return Err("parameter x is outside a possible length")
get_permutation_for(&nums, 5, 0); // return Err("Insufficient number of object in parameters objects for given parameter degree")
```
## Cartesian product of multiple sets of data
To get cartesian product from 3 set of data.
```Rust
    use permutator::cartesian_product;

    cartesian_product(&[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]], |product| {
        println!("{:?}", product);
    });
```
Or do it in iterative style
```Rust
    use permutator::CartesianProductIterator
    use std::time::Instant;
    let data : &[&[usize]] = &[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]];
    let cart = CartesianProductIterator::new(&data);
    let mut counter = 0;
    let timer = Instant::now();

    for p in cart {
        // println!("{:?}", p);
        counter += 1;
    }

    assert_eq!(data.iter().fold(1, |cum, domain| {cum * domain.len()}), counter);
    println!("Total {} products done in {:?}", counter, timer.elapsed());
```
Import trait then skipping all object instantiation altogether.
```Rust
    use std::time::Instant;
    use permutator::CartesianProduct;
    let data : &[&[usize]] = &[&[1, 2], &[3, 4, 5, 6], &[7, 8, 9]];
    let mut counter = 0;
    let timer = Instant::now();

    data.cart_prod.for_each(|p| {
        // println!("{:?}", p);
        counter += 1;
    });

    assert_eq!(data.iter().fold(1, |cum, domain| {cum * domain.len()}), counter);
    println!("Total {} products done in {:?}", counter, timer.elapsed());
```
## Combination Iterator examples
The struct offer two ways to get a combination. 
First it can be used as Iterator. Second
manually call next with borrowed mut variable that
will store the next combination.
```Rust
// Combination iterator
use permutator::LargeCombinationIterator;
use std::time::{Instant};
let data = [1, 2, 3, 4, 5];
let combinations = LargeCombinationIterator::new(&data, 3);
let mut counter = 0;
let timer = Instant::now();

for combination in combinations {
    // uncomment a line below to print each combination
    println!("{}:{:?}", counter, combination);
    counter += 1;
}

println!("Total {} combinations in {:?}", counter, timer.elapsed());
```
```Rust
use permutator::Combination;
use std::time::{Instant};

let data = [1, 2, 3, 4, 5];
let mut counter = 0;

let timer = Instant::now();

data.combination(3).for_each(|combination| {
    // uncomment a line below to print each combination
    println!("{}:{:?}", counter, combination);
    counter += 1;
}

println!("Total {} combinations in {:?}", counter, timer.elapsed());
```
## Iterator style permutation example
There's `HeapPermutationIterator` and `KPermutationIterator` struct that can do 
permutation. Below is an example of `HeapPermutationIterator`.
```Rust
use permutator::HeapPermutationIterator;
use std::time::{Instant};
let data = &mut [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
println!("0:{:?}", data);
let mut permutator = HeapPermutationIterator::new(data);
let timer = Instant::now();
let mut counter = 1;

for permutated in permutator {
    println!("{}:{:?}", counter, permutated);
    counter += 1;
}

// or use iterator related functional approach like line below.
// permutator.into_iter().for_each(|permutated| {counter += 1;});

println!("Done {} permutations in {:?}", counter, timer.elapsed());
```
## Iterator into Rc<RefCell<>>
There's `HeapPermutationCellIter` and `KPermutationCellIter` struct that offer
such functionality. Below is an example of `HeapPermutationCellIter`
```Rust
use permutator::HeapPermutationCellIter;
use std::cell::RefCell;
use std::rc::Rc;
use std::time::{Instant};

let data = &mut [1, 2, 3, 4];
let result = Rc::new(RefCell::new(data));
// print original data before permutation
println!("0:{:?}", &*result.borrow());
let mut permutator = HeapPermutationCellIter::new(Rc::clone(&result));
let timer = Instant::now();
let mut counter = 1;

for _ in permutator {
    // uncomment the line below to print all possible permutation
    println!("{}:{:?}", counter, &*result.borrow());
    counter += 1;
}

println!("Done {} permutations in {:?}", counter, timer.elapsed());
```
The `KPermutationCellIter` example show below
```Rust
use permutator::KPermutationCellIter;
use std::cell::RefCell;
use std::rc::Rc;

let k = 3;
let data = &[1, 2, 3, 4, 5];
let mut result = vec![&data[0]; k];
let shared = Rc::new(RefCell::new(result.as_mut_slice()));

let mut kperm = KPermutationCellIter::new(data, k, Rc::clone(&shared));
for _ in kperm {
    // each permutation will be stored in `shared`
    println!("{:?}", &*shared.borrow());
}
```
## Lexicographically ordered operation
Generate ordered cartesian product between [1, 2, 3], [4, 5], [6, 7], [8, 9], and [10] then make ordered k-permutation where k = 3 from each cartesian product.
```Rust
use permutator::{CartesianProduct, LargeCombinationIterator, x_permutation};

let data : &[&[u8]] = &[&[1, 2, 3], &[4, 5], &[6, 7], &[8, 9], &[10]];
let k = 3;

data.cart_prod().for_each(|cp| {
    // lexicographically ordered cartesian product in `cp`
    LargeCombinationIterator::new(&cp, k).for_each(|co| {
        // lexicographically ordered combination of length 3
        x_permutation(&co, |_| true, |p| {
            // lexicographically ordered permutation
            println!("{:?}", p);
        });
    });
});
```
Generate ordered cartesian product between [1, 2, 3], [4, 5], [6, 7], [8, 9], and [10] then make ordered k-permutation where k = 3 from each cartesian product. Additionally, filter out all permutation that the first element is odd number.
```Rust
use permutator::{CartesianProduct, LargeCombinationIterator, x_permutation};

let data : &[&[u8]] = &[&[1, 2, 3], &[4, 5], &[6, 7], &[8, 9], &[10]];
let k = 3;

data.cart_prod().for_each(|cp| {
    // lexicographically ordered cartesian product in `cp`
    LargeCombinationIterator::new(&cp, k).for_each(|co| {
        // lexicographically ordered combination of length 3
        x_permutation(
            &co, 
            // first bit == 1 mean it's odd number
            // notice *** in front of v ?
            // that's because the root module always return borrowed value.
            // to get rid of this, use all operation from `copy` module
            |v| ***v[0] & 1 != 1, 
            |p| 
        {
            // lexicographically ordered permutation
            println!("{:?}", p);
        });
    });
});
```
## Traits that add new function to various types
`CartesianProduct` trait add `cart_prod` function.
The function take no parameter. The function return the same Iterator that also return by 
the [provided struct](#iterator)
so it can be used like [this example](#cartesian-product-of-multiple-sets-of-data)
```Rust
use permutator::CartesianProduct;
let data : &[&[i32]]= &[&[1, 2, 3], &[4, 5]];

data.cart_prod().for_each(|p| {
    // print all product like [1, 4], [1, 5], ...
    println!("{:?}", p);
});
```
or
```Rust
use permutator::CartesianProduct;
let data : &[&[i32]]= &[&[1, 2, 3], &[4, 5]];
let mut result = vec![&data[0][0]; data.len()];
let shared = Rc::new(RefCell::new(result.as_mut_slice()));
// shared can be owned by anyone who want to get cartesian product.
(&data, Rc::clone(&shared)).cart_prod().for_each(|_| {
    // print all product like [1, 4], [1, 5], ...
    println!("{:?}", &*shared.borrow());
    // and notify all owner of shared object so they know that new product is available.
});
```
`Combination` trait add `combination` function.
The function take 1 parameter. It's a size of combination frame, AKA `k`, `r`, etc.
The function return the same Iterator that also return by 
the [provided struct](#iterator-1)
so it can be used like [this example](#combination-iterator-examples)
```Rust
use permutator::Combination;
let data = [1, 2, 3, 4, 5];
data.combination(3).for_each(|comb| {
    // print all combination like [1, 2, 3], [1, 2, 4], ...
    println!("{:?}", comb);
});
```
or
```Rust
use permutator::Combination;
let data = [1, 2, 3, 4, 5];
let k = 3;
let mut result = vec![&data[0]; k];
let shared = Rc::new(RefCell::new(result.as_mut_slice()));
// shared can be owned by anyone who want to get combinations.
(&data, Rc::clone(&shared)).combination(k).for_each(|_| {
    // print all combination like [1, 2, 3], [1, 2, 4], ...
    println!("{:?}", &*shared.borrow());
    // and notify all owner of shared object so they know that new combination is available.
});
```
`Permutation` trait add `permutation` function.
It permute the `[T]`, `Vec<T>`, or Rc<RefCell<&mut [T]>> in place. 
The function return the same Iterator that also return by the either
this [provided struct](#iterator-2) or this [provided struct](#iterator-3)
depending on what types does this method is called upon
so it can be used like [this example](#iterator-style-permutation-example)
or [this example](#iterator-into-rcrefcell) or following example:
```Rust
use permutator::Permutation;
let mut data = [1, 2, 3];
data.permutation().for_each(|p| {
    // print all the permutation.
    println!("{:?}", p);
});
// The `data` at this point will also got permuted.
// It'll print the last permuted value twice.
println!("{:?}", data);
```
```Rust
use permutator::Permutation;
let mut data = [1, 2, 3];
let shared = Rc::new(RefCell::new(&mut data));
// shared can be owned by anyone that want to get a permutation
Rc::clone(&shared).permutation().for_each(|_| {
    // print all the permutation.
    println!("{:?}", &*shared.borrow());
    // and notify all owner of shared object so they know that new permutation is available.
});
// The same goes as previous example, the data inside shared on every owner will now has last permuted value.
```
or k-permutation into Rc<RefCell<>>
```Rust
use permutator::KPermutationCellIter;
use std::cell::RefCell;
use std::rc::Rc;

let k = 3;
let data = &[1, 2, 3, 4, 5];
let mut result = vec![&data[0]; k];
let shared = Rc::new(RefCell::new(result.as_mut_slice()));

(data, k, Rc::clone(&shared)).permutation().for_each(|_| {
    // each permutation will be stored in `shared`
    println!("{:?}", &*shared.borrow());
});
```
## Unsafe way for faster share result
In some circumstance, the combination result need to be shared but
the safe function don't allow you to share the result except copy/clone
the result for each share. When that's the case, using Iterator may answer
such situation. 

Another approach is to use `CellIer` suffix struct or callback function 
with `_cell` suffix. As long as each iteration doesn't reuse previous
result and result owner treat result as immutable data then it's safe
to use this approach.

Another way, if safety is less concern than performance, there's an 
unsafe side implementation that take a mutable pointer to store result. 
There's more thing to keep in mind than using struct with `CellIter` suffix 
and callback function `_cell` suffix. For example:
1. Pointer need to outlive the entire operation
2. The object that pointer is pointed to need to be release.
3. Result synchronization, both in single and multiple thread(s).
4. ...
5. All other unsafe Rust conditions may applied

Example:
- unsafe callback function
```Rust
    use permutator::unsafe_combination;
    let data = [1, 2, 3, 4, 5];
    let r = 3;
    let mut counter = 0;
    let mut result = vec![&data[0]; r];
    let result_ptr = result.as_mut_slice() as *mut [&usize];

    unsafe {
        unsafe_combination(&data, r, result_ptr, || {
            println!("{:?}", result);
            counter += 1;
        });
    }

    assert_eq!(counter, divide_factorial(data.len(), data.len() - r) / factorial(r));
```
- unsafe Iterator object
```Rust
    use permutator::LargeCombinationRefIter;
    let data = [1, 2, 3, 4, 5];
    let r = 3;
    let mut counter = 0;
    let mut result = vec![&data[0]; r];
    let result_ptr = result.as_mut_slice() as *mut [&usize];

    unsafe {
        let comb = LargeCombinationRefIter::new(&data, r, result_ptr);
        for _ in comb {
            println!("{:?}", result);
            counter += 1;
        });
    }

    assert_eq!(counter, divide_factorial(data.len(), data.len() - r) / factorial(r));
```
## Share with multiple object from callback function
An example showing the built-in feature that save new cartesian product into
Rc<RefCell<>> so it can be easily share to other.
This example use two worker objects that read each cartesian product
and print it.
```Rust
    use std::fmt::Debug;
    use std::rc::Rc;
    use std::cell::RefCell;

    use permutator::cartesian_product_cell;

    trait Consumer {
        fn consume(&self);
    }
    struct Worker1<'a, T : 'a> {
        data : Rc<RefCell<&'a mut[&'a T]>>
    }
    impl<'a, T : 'a + Debug> Consumer for Worker1<'a, T> {
        fn consume(&self) {
            println!("Work1 has {:?}", self.data);
        }
    }
    struct Worker2<'a, T : 'a> {
        data : Rc<RefCell<&'a mut[&'a T]>>
    }
    impl<'a, T : 'a + Debug> Consumer for Worker2<'a, T> {
        fn consume(&self) {
            println!("Work2 has {:?}", self.data);
        }
    }

    fn start_cartesian_product_process<'a>(data : &'a[&'a[i32]], cur_result : Rc<RefCell<&'a mut [&'a i32]>>, consumers : Vec<Box<Consumer + 'a>>) {
        cartesian_product_cell(data, cur_result, || {
            consumers.iter().for_each(|c| {
                c.consume();
            })
        });
    }

    let data : &[&[i32]] = &[&[1, 2], &[3, 4, 5], &[6]];
    let mut result = vec![&data[0][0]; data.len()];

    let shared = Rc::new(RefCell::new(result.as_mut_slice()));
    let worker1 = Worker1 {
        data : Rc::clone(&shared)
    };
    let worker2 = Worker2 {
        data : Rc::clone(&shared)
    };
    let consumers : Vec<Box<Consumer>> = vec![Box::new(worker1), Box::new(worker2)];
    start_cartesian_product_process(data, shared, consumers);
```
## Iterator that send data to other threads
This example generates a k-permutation and send it to multiple threads
by using KPermutation iterator.

The main thread will keep generating a new k-permutation and send it to
every thread while all other threads read new k-permutation via channel.
In this example, it use sync_channel with size 0. It doesn't hold anything
inside the buffer. The sender will block until the receiver read the data.
```Rust
    use permutator::KPermutation;
    use std::sync::mpsc;
    let k = 5;
    let data : &[i32] = &[1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

    // workter thread 1
    let (t1_send, t1_recv) = mpsc::sync_channel::<Option<Vec<&i32>>>(0);

    thread::spawn(move || {
        while let Some(c) = t1_recv.recv().unwrap() {
            let result : Vec<&i32> = c;
            println!("Thread1: {:?}", result);
        }
        println!("Thread1 is done");
    });

    // worker thread 2
    let (t2_send, t2_recv) = mpsc::sync_channel::<Option<Vec<&i32>>>(0);
    thread::spawn(move || {
        while let Some(c) = t2_recv.recv().unwrap() {
            let result : Vec<&i32> = c;
            println!("Thread2: {:?}", result);
        }
        println!("Thread2 is done");
    });

    let channels = vec![t1_send, t2_send];
    // main thread that generate result
    thread::spawn(move || {
        use std::time::Instant;
        let timer = Instant::now();
        let mut counter = 0;
        let kperm = KPermutation::new(data, k);
        
        kperm.into_iter().for_each(|c| {
            channels.iter().for_each(|t| {t.send(Some(c.to_owned())).unwrap();});
            counter += 1;
        });
        channels.iter().for_each(|t| {t.send(None).unwrap()});
        println!("Done {} combinations in {:?}", counter, timer.elapsed());
    }).join().unwrap();
```
## Callback function send data to other thread
This example generates a k-permutation and send it to multiple threads by
using a callback approach k_permutation_sync function.

The main thread will keep generating a new k-permutation and send it to
every thread while all other threads read new k-permutation via channel.
In this example, it use sync_channel with size 0. It doesn't hold anything
inside the buffer. The sender will block until the receiver read the data.
```Rust
    use std::sync::{Arc, RwLock};
    use std::sync::mpsc;
    use std::sync::mpsc::{Receiver, SyncSender};
    fn start_k_permutation_process<'a>(data : &'a[i32], cur_result : Arc<RwLock<Vec<&'a i32>>>, k : usize, notifier : Vec<SyncSender<Option<()>>>, release_recv : Receiver<()>) {
        use std::time::Instant;
        let timer = Instant::now();
        let mut counter = 0;
        k_permutation_sync(data, k, cur_result, || {
            notifier.iter().for_each(|n| {
                n.send(Some(())).unwrap(); // notify every thread that new data available
            });

            for _ in 0..notifier.len() {
                release_recv.recv().unwrap(); // block until all thread reading data notify on read completion
            }

            counter += 1;
        });

        notifier.iter().for_each(|n| {n.send(None).unwrap()}); // notify every thread that there'll be no more data.

        println!("Done {} combinations with 2 workers in {:?}", counter, timer.elapsed());
    }
    let k = 5;
    let data = &[1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    let result = vec![&data[0]; k];
    let result_sync = Arc::new(RwLock::new(result));

    // workter thread 1
    let (t1_send, t1_recv) = mpsc::sync_channel::<Option<()>>(0);
    let (main_send, main_recv) = mpsc::sync_channel(0);
    let t1_local = main_send.clone();
    let t1_dat = Arc::clone(&result_sync);
    thread::spawn(move || {
        while let Some(_) = t1_recv.recv().unwrap() {
            let result : &Vec<&i32> = &*t1_dat.read().unwrap();
            // println!("Thread1: {:?}", result);
            t1_local.send(()).unwrap(); // notify generator thread that reference is no longer neeed.
        }
        println!("Thread1 is done");
    });

    // worker thread 2
    let (t2_send, t2_recv) = mpsc::sync_channel::<Option<()>>(0);
    let t2_dat = Arc::clone(&result_sync);
    let t2_local = main_send.clone();
    thread::spawn(move || {
        while let Some(_) = t2_recv.recv().unwrap() {
            let result : &Vec<&i32> = &*t2_dat.read().unwrap();
            // println!("Thread2: {:?}", result);
            t2_local.send(()).unwrap(); // notify generator thread that reference is no longer neeed.
        }
        println!("Thread2 is done");
    });

    // main thread that generate result
    thread::spawn(move || {
        start_k_permutation_process(data, result_sync, k, vec![t1_send, t2_send], main_recv);
    }).join().unwrap();
```
## Breaking change from 0.3.x to 0.4
trait `Permutation`, functions `heap_permutation`, `heap_permutation_cell`, and `heap_permutation_sync` now return the unpermuted value first instead of returning permuted once first.
```Rust
    use permutator::{
        heap_permutation,
        Permutation
    };
    let arr = &[1, 2, 3];
    // no longer need to `println!("{:?}", arr);` first

    heap_permutation(arr, |perm| {
        // now it print [1, 2, 3], [2, 1, 3], ...
        println!("{:?}", perm);
    });

    arr.permutation().for_each(|perm| {
        // now it print [1, 2, 3], [2, 1, 3], ...
        println!("{:?}", perm);
    });
```
All usage on `permutator::copy::HeapPermutationIterator` shall become `permutator::HeapPermutationIterator`
## Breaking change from 0.2.x to 0.3.x
`combination` from root module and `copy` module now return "Large" combination family.
### Rationale
All "Gosper" combination family is supersede by "Large" combination family. It doesn't mark those family deprecated yet. There's only Rust document that state it being deprecated. This is because the reason for being deprecated is that the implementation in this crate is inefficient. Each time that gosper algorithm generate new value, it copied all value or create new ref for that combination. In contrast to "Large" family that only copy or create new ref when the combination at that position changed. This make "Large" family combination faster over 10 times. So unless more efficient implementation is available, after sometime, the "Gosper" family function may officially mark deprecated. There's also "Gosper" combination family limitation that it can generate combination as many as bits of variable that support fast bit operation, which Rust currently is capped to 128 bits so source be as large as 128 elements slice. In practical, this is more than enough on most case. But in some edge case, "Large" combination family permit a combination on data as many as `usize` max value, which is 2^32 on 32 bits platform and 2^64 on 64 bits platform. The result from "Large" combination family is lexicographic ordered if the source is lexicographic ordered.

Internally, k-permutation family are all migrated to use "Large" combination family instead of "Gosper" family.
## Migration guide from 0.2.x to 0.3.x
- `combination*` functions become `large_combination*` functions.
- `GosperCombination*` structs become `LargeCombination*` structs.
For example:
```Rust
    // This line will be error in 0.3.0
    let combinations : GosperCombinationIterator = [1, 2, 3, 4, 5].combination(3);
```
Become
```Rust
    let combinations : LargeCombinationIterator = [1, 2, 3, 4, 5].combination(3);
```
## Breaking change from 0.1.6 to 0.2.0
Version 0.2.0 has major overhaul on entire crate to make use case more consistent on each other functionalities. There are now only 2 major distinct styles. 1. Callback function 2. Iterator object. The Iterator object has 2 sub-style. 1. Plain `Iterator` style. 2. Shared `Iterator` style. The shared `Iterator` style has both safe and unsafe kind of share which is similar to callback style counterpart. It need to rename every structs. It add one more trait and some more types.
More detail on breaking change:
- An iterator style `next_into_cell` has been refactored into their own struct. Now it can be used like simple Iterator with slightly different way to return value.
- A mimic iterator style `next` that took `&mut[&T]` parameter has been refactored into their own struct. Now it can be used like simple Iterator with slightly different way to return value.
- `CartesianProduct` struct is renamed to `CartesianProductIterator`
- `HeapPermutation` struct is renamed to `HeapPermutationIterator`
- `GosperCombination` struct is renamed to `GosperCombinationIterator`
- `KPermutation` struct is renamed to `KPermutationIterator`
- `Combination` and `Permutation` traits now use associated type `combinator` and `permutator` respectively to define the struct that will be used to perform combination/permutation on slice/array/Vec and Rc<RefCell<&mut [T]>> instead of fixed return type. Now, all trait return an object that implement `Iterator` trait. It doesn't constrait the associated type `Item` defined in `Iterator` thought. The trait now take <'a> lifetime parameter and no longer take generic type `T`. The `combination` function change signature from `combination(&mut self)` to `combination(&'a mut self)`. The `permutation` function change signature from `permutation(&mut self)` to `permutation(&'a mut self)`.
## Migration guide from 0.1.6 to 0.2.0
- The mimic iterator style function now moved into it own iterator struct that have suffix "RefIter" in its' name. All of its become `unsafe` to use. Following is the list of such structs.
    - CartesianProductRefIter
    - CombinationRefIter
    - GosperCombinationRefIter
    - HeapPermutationRefIter
    - KPermutationRefIter
- All `next_into_cell` function now moved into it own iterator struct that have suffix "CellIter" in its' name. Following is the list of such structs.
    - CartesianProductCellIter
    - CombinationCellIter
    - GosperCombinationCellIter
    - HeapPermutationCellIter
    - KPermutationCellIter
- Rename all structs. Following is the renamed structs.
    - `CartesianProduct` struct is renamed to `CartesianProductIterator`
    - `HeapPermutation` struct is renamed to `HeapPermutationIterator`
    - `GosperCombination` struct is renamed to `GosperCombinationIterator`
    - `KPermutation` struct is renamed to `KPermutationIterator`
- Any implementation on other type for `Combination` and `Permutation` traits need to define the associated type as well as change `combination` and `permutation` function signature from taking `&self` to `&'a self` and `&mut self` to `&'a mut self` respectively.

Example:
New `Permutation` trait now look like this.
```Rust
// instead of this old implementation
// impl Permutation<T> for [T] {
//     fn permutation(&mut self) -> HeapPermutation<T> {
//          HeapPermutation {
//              c : vec![0; self.len],
//              data : self,
//              i : 0
//          }
//     }
// }
// now it become..
impl<'a, T> Permutation<'a> for [T] where T : 'a {
    type Permutator = HeapPermutation<'a, T>; // This struct implement `Iterator`

    fn permutation(&'a mut self) -> HeapPermutation<T> {
        HeapPermutation {
            c : vec![0; self.len()],
            data : self,
            i : 0
        }
    }
}
```
The added complexity make this trait applicable to wider type.
Here's new implemention on `Rc<RefCell<&mut [T]>>` which return `HeapPermutationCell`.
```Rust
impl<'a, T> Permutation<'a> for Rc<RefCell<&'a mut[T]>> where T :'a {
    type Permutator = HeapPermutationCell<'a, T>; // This struct also implement `Iterator`

    fn permutation(&'a mut self) -> HeapPermutationCell<T> {
        HeapPermutationCell {
            c : vec![0; self.borrow().len()],
            data : Rc::clone(self),
            i : 0
        }
    }
}
```