prost 0.9.0

A Protocol Buffers implementation for the Rust Language.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
![continuous integration](https://github.com/tokio-rs/prost/workflows/continuous%20integration/badge.svg)
[![Documentation](https://docs.rs/prost/badge.svg)](https://docs.rs/prost/)
[![Crate](https://img.shields.io/crates/v/prost.svg)](https://crates.io/crates/prost)
[![Dependency Status](https://deps.rs/repo/github/tokio-rs/prost/status.svg)](https://deps.rs/repo/github/tokio-rs/prost)

# *PROST!*

`prost` is a [Protocol Buffers](https://developers.google.com/protocol-buffers/)
implementation for the [Rust Language](https://www.rust-lang.org/). `prost`
generates simple, idiomatic Rust code from `proto2` and `proto3` files.

Compared to other Protocol Buffers implementations, `prost`

* Generates simple, idiomatic, and readable Rust types by taking advantage of
  Rust `derive` attributes.
* Retains comments from `.proto` files in generated Rust code.
* Allows existing Rust types (not generated from a `.proto`) to be serialized
  and deserialized by adding attributes.
* Uses the [`bytes::{Buf, BufMut}`]https://github.com/carllerche/bytes
  abstractions for serialization instead of `std::io::{Read, Write}`.
* Respects the Protobuf `package` specifier when organizing generated code
  into Rust modules.
* Preserves unknown enum values during deserialization.
* Does not include support for runtime reflection or message descriptors.

## Using `prost` in a Cargo Project

First, add `prost` and its public dependencies to your `Cargo.toml`:

```
[dependencies]
prost = "0.9"
# Only necessary if using Protobuf well-known types:
prost-types = "0.9"
```

The recommended way to add `.proto` compilation to a Cargo project is to use the
`prost-build` library. See the [`prost-build` documentation](prost-build) for
more details and examples.

See the [snazzy repository](https://github.com/danburkert/snazzy) for a simple
start-to-finish example.

## Generated Code

`prost` generates Rust code from source `.proto` files using the `proto2` or
`proto3` syntax. `prost`'s goal is to make the generated code as simple as
possible.

### Packages

Prost can now generate code for `.proto` files that don't have a package spec. 
`prost` will translate the Protobuf package into
a Rust module. For example, given the `package` specifier:

[package]: https://developers.google.com/protocol-buffers/docs/proto#packages

```proto
package foo.bar;
```

All Rust types generated from the file will be in the `foo::bar` module.

### Messages

Given a simple message declaration:

```proto
// Sample message.
message Foo {
}
```

`prost` will generate the following Rust struct:

```rust
/// Sample message.
#[derive(Clone, Debug, PartialEq, Message)]
pub struct Foo {
}
```

### Fields

Fields in Protobuf messages are translated into Rust as public struct fields of the
corresponding type.

#### Scalar Values

Scalar value types are converted as follows:

| Protobuf Type | Rust Type |
| --- | --- |
| `double` | `f64` |
| `float` | `f32` |
| `int32` | `i32` |
| `int64` | `i64` |
| `uint32` | `u32` |
| `uint64` | `u64` |
| `sint32` | `i32` |
| `sint64` | `i64` |
| `fixed32` | `u32` |
| `fixed64` | `u64` |
| `sfixed32` | `i32` |
| `sfixed64` | `i64` |
| `bool` | `bool` |
| `string` | `String` |
| `bytes` | `Vec<u8>` |

#### Enumerations

All `.proto` enumeration types convert to the Rust `i32` type. Additionally,
each enumeration type gets a corresponding Rust `enum` type. For example, this
`proto` enum:

```proto
enum PhoneType {
  MOBILE = 0;
  HOME = 1;
  WORK = 2;
}
```

gets this corresponding Rust enum [1]:

```rust
pub enum PhoneType {
    Mobile = 0,
    Home = 1,
    Work = 2,
}
```

You can convert a `PhoneType` value to an `i32` by doing:

```rust
PhoneType::Mobile as i32
```

The `#[derive(::prost::Enumeration)]` annotation added to the generated
`PhoneType` adds these associated functions to the type:

```rust
impl PhoneType {
    pub fn is_valid(value: i32) -> bool { ... }
    pub fn from_i32(value: i32) -> Option<PhoneType> { ... }
}
```

so you can convert an `i32` to its corresponding `PhoneType` value by doing,
for example:

```rust
let phone_type = 2i32;

match PhoneType::from_i32(phone_type) {
    Some(PhoneType::Mobile) => ...,
    Some(PhoneType::Home) => ...,
    Some(PhoneType::Work) => ...,
    None => ...,
}
```

Additionally, wherever a `proto` enum is used as a field in a `Message`, the
message will have 'accessor' methods to get/set the value of the field as the
Rust enum type. For instance, this proto `PhoneNumber` message that has a field
named `type` of type `PhoneType`:

```proto
message PhoneNumber {
  string number = 1;
  PhoneType type = 2;
}
```

will become the following Rust type [1] with methods `type` and `set_type`:

```rust
pub struct PhoneNumber {
    pub number: String,
    pub r#type: i32, // the `r#` is needed because `type` is a Rust keyword
}

impl PhoneNumber {
    pub fn r#type(&self) -> PhoneType { ... }
    pub fn set_type(&mut self, value: PhoneType) { ... }
}
```

Note that the getter methods will return the Rust enum's default value if the
field has an invalid `i32` value.

The `enum` type isn't used directly as a field, because the Protobuf spec
mandates that enumerations values are 'open', and decoding unrecognized
enumeration values must be possible.

[1] Annotations have been elided for clarity. See below for a full example.

#### Field Modifiers

Protobuf scalar value and enumeration message fields can have a modifier
depending on the Protobuf version. Modifiers change the corresponding type of
the Rust field:

| `.proto` Version | Modifier | Rust Type |
| --- | --- | --- |
| `proto2` | `optional` | `Option<T>` |
| `proto2` | `required` | `T` |
| `proto3` | default | `T` |
| `proto2`/`proto3` | repeated | `Vec<T>` |

#### Map Fields

Map fields are converted to a Rust `HashMap` with key and value type converted
from the Protobuf key and value types.

#### Message Fields

Message fields are converted to the corresponding struct type. The table of
field modifiers above applies to message fields, except that `proto3` message
fields without a modifier (the default) will be wrapped in an `Option`.
Typically message fields are unboxed. `prost` will automatically box a message
field if the field type and the parent type are recursively nested in order to
avoid an infinite sized struct.

#### Oneof Fields

Oneof fields convert to a Rust enum. Protobuf `oneof`s types are not named, so
`prost` uses the name of the `oneof` field for the resulting Rust enum, and
defines the enum in a module under the struct. For example, a `proto3` message
such as:

```proto
message Foo {
  oneof widget {
    int32 quux = 1;
    string bar = 2;
  }
}
```

generates the following Rust[1]:

```rust
pub struct Foo {
    pub widget: Option<foo::Widget>,
}
pub mod foo {
    pub enum Widget {
        Quux(i32),
        Bar(String),
    }
}
```

`oneof` fields are always wrapped in an `Option`.

[1] Annotations have been elided for clarity. See below for a full example.

### Services

`prost-build` allows a custom code-generator to be used for processing `service`
definitions. This can be used to output Rust traits according to an
application's specific needs.

### Generated Code Example

Example `.proto` file:

```proto
syntax = "proto3";
package tutorial;

message Person {
  string name = 1;
  int32 id = 2;  // Unique ID number for this person.
  string email = 3;

  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
  }

  message PhoneNumber {
    string number = 1;
    PhoneType type = 2;
  }

  repeated PhoneNumber phones = 4;
}

// Our address book file is just one of these.
message AddressBook {
  repeated Person people = 1;
}
```

and the generated Rust code (`tutorial.rs`):

```rust
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Person {
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    /// Unique ID number for this person.
    #[prost(int32, tag="2")]
    pub id: i32,
    #[prost(string, tag="3")]
    pub email: ::prost::alloc::string::String,
    #[prost(message, repeated, tag="4")]
    pub phones: ::prost::alloc::vec::Vec<person::PhoneNumber>,
}
/// Nested message and enum types in `Person`.
pub mod person {
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct PhoneNumber {
        #[prost(string, tag="1")]
        pub number: ::prost::alloc::string::String,
        #[prost(enumeration="PhoneType", tag="2")]
        pub r#type: i32,
    }
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
    #[repr(i32)]
    pub enum PhoneType {
        Mobile = 0,
        Home = 1,
        Work = 2,
    }
}
/// Our address book file is just one of these.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AddressBook {
    #[prost(message, repeated, tag="1")]
    pub people: ::prost::alloc::vec::Vec<Person>,
}
```

## Accessing the `protoc` `FileDescriptorSet`

The `prost_build::Config::file_descriptor_set_path` option can be used to emit a file descriptor set
during the build & code generation step. When used in conjunction with the `std::include_bytes`
macro and the `prost_types::FileDescriptorSet` type, applications and libraries using Prost can
implement introspection capabilities requiring details from the original `.proto` files.

## Using `prost` in a `no_std` Crate

`prost` is compatible with `no_std` crates. To enable `no_std` support, disable
the `std` features in `prost` and `prost-types`:

```
[dependencies]
prost = { version = "0.6", default-features = false, features = ["prost-derive"] }
# Only necessary if using Protobuf well-known types:
prost-types = { version = "0.6", default-features = false }
```

Additionally, configure `prost-build` to output `BTreeMap`s instead of `HashMap`s
for all Protobuf `map` fields in your `build.rs`:

```rust
let mut config = prost_build::Config::new();
config.btree_map(&["."]);
```

When using edition 2015, it may be necessary to add an `extern crate core;`
directive to the crate which includes `prost`-generated code.

## Serializing Existing Types

`prost` uses a custom derive macro to handle encoding and decoding types, which
means that if your existing Rust type is compatible with Protobuf types, you can
serialize and deserialize it by adding the appropriate derive and field
annotations.

Currently the best documentation on adding annotations is to look at the
generated code examples above.

### Tag Inference for Existing Types

Prost automatically infers tags for the struct.

Fields are tagged sequentially in the order they
are specified, starting with `1`.

You may skip tags which have been reserved, or where there are gaps between
sequentially occurring tag values by specifying the tag number to skip to with
the `tag` attribute on the first field after the gap. The following fields will
be tagged sequentially starting from the next number.

```rust
use prost;
use prost::{Enumeration, Message};

#[derive(Clone, PartialEq, Message)]
struct Person {
    #[prost(string, tag = "1")]
    pub id: String, // tag=1
    // NOTE: Old "name" field has been removed
    // pub name: String, // tag=2 (Removed)
    #[prost(string, tag = "6")]
    pub given_name: String, // tag=6
    #[prost(string)]
    pub family_name: String, // tag=7
    #[prost(string)]
    pub formatted_name: String, // tag=8
    #[prost(uint32, tag = "3")]
    pub age: u32, // tag=3
    #[prost(uint32)]
    pub height: u32, // tag=4
    #[prost(enumeration = "Gender")]
    pub gender: i32, // tag=5
    // NOTE: Skip to less commonly occurring fields
    #[prost(string, tag = "16")]
    pub name_prefix: String, // tag=16  (eg. mr/mrs/ms)
    #[prost(string)]
    pub name_suffix: String, // tag=17  (eg. jr/esq)
    #[prost(string)]
    pub maiden_name: String, // tag=18
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Enumeration)]
pub enum Gender {
    Unknown = 0,
    Female = 1,
    Male = 2,
}
```

## FAQ

1. **Could `prost` be implemented as a serializer for [Serde]https://serde.rs/?**

  Probably not, however I would like to hear from a Serde expert on the matter.
  There are two complications with trying to serialize Protobuf messages with
  Serde:

  - Protobuf fields require a numbered tag, and currently there appears to be no
    mechanism suitable for this in `serde`.
  - The mapping of Protobuf type to Rust type is not 1-to-1. As a result,
    trait-based approaches to dispatching don't work very well. Example: six
    different Protobuf field types correspond to a Rust `Vec<i32>`: `repeated
    int32`, `repeated sint32`, `repeated sfixed32`, and their packed
    counterparts.

  But it is possible to place `serde` derive tags onto the generated types, so
  the same structure can support both `prost` and `Serde`.

2. **I get errors when trying to run `cargo test` on MacOS**

  If the errors are about missing `autoreconf` or similar, you can probably fix
  them by running

  ```
  brew install automake
  brew install libtool
  ```

## License

`prost` is distributed under the terms of the Apache License (Version 2.0).

See [LICENSE](LICENSE) for details.

Copyright 2017 Dan Burkert