raw_cpuid/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
//! A library to parse the x86 CPUID instruction, written in rust with no
//! external dependencies. The implementation closely resembles the Intel CPUID
//! manual description. The library works with no_std.
//!
//! ## Example
//! ```rust
//! use raw_cpuid::CpuId;
//! let cpuid = CpuId::new();
//!
//! if let Some(vf) = cpuid.get_vendor_info() {
//! assert!(vf.as_str() == "GenuineIntel" || vf.as_str() == "AuthenticAMD");
//! }
//!
//! let has_sse = cpuid.get_feature_info().map_or(false, |finfo| finfo.has_sse());
//! if has_sse {
//! println!("CPU supports SSE!");
//! }
//!
//! if let Some(cparams) = cpuid.get_cache_parameters() {
//! for cache in cparams {
//! let size = cache.associativity() * cache.physical_line_partitions() * cache.coherency_line_size() * cache.sets();
//! println!("L{}-Cache size is {}", cache.level(), size);
//! }
//! } else {
//! println!("No cache parameter information available")
//! }
//! ```
//!
//! # Platform support
//!
//! CPU vendors may choose to not support certain functions/leafs in cpuid or
//! only support them partially. We highlight this with the following emojis
//! throughout the documentation:
//!
//! - ✅: This struct/function is fully supported by the vendor.
//! - 🟡: This struct is partially supported by the vendor, refer to individual
//! functions for more information.
//! - ❌: This struct/function is not supported by the vendor. When queried on
//! this platform, we will return None/false/0 (or some other sane default).
//! - ❓: This struct/function is not supported by the vendor according to the
//! manual, but the in practice it still may return valid information.
//!
//! Note that the presence of a ✅ does not guarantee that a specific feature
//! will exist for your CPU -- just that it is potentially supported by the
//! vendor on some of its chips. You will still have to query it at runtime.
#![cfg_attr(not(feature = "std"), no_std)]
#![crate_name = "raw_cpuid"]
#![crate_type = "lib"]
#[cfg(test)]
#[macro_use]
extern crate std;
#[cfg(feature = "display")]
pub mod display;
mod extended;
#[cfg(test)]
mod tests;
use bitflags::bitflags;
use core::fmt::{self, Debug, Formatter};
use core::mem::size_of;
use core::slice;
use core::str;
#[cfg(feature = "serialize")]
use serde_derive::{Deserialize, Serialize};
pub use extended::*;
/// Uses Rust's `cpuid` function from the `arch` module.
#[cfg(any(
all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"),
all(target_arch = "x86_64", not(target_env = "sgx"))
))]
pub mod native_cpuid {
use crate::CpuIdResult;
#[cfg(all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"))]
use core::arch::x86 as arch;
#[cfg(all(target_arch = "x86_64", not(target_env = "sgx")))]
use core::arch::x86_64 as arch;
pub fn cpuid_count(a: u32, c: u32) -> CpuIdResult {
// Safety: CPUID is supported on all x86_64 CPUs and all x86 CPUs with
// SSE, but not by SGX.
let result = unsafe { self::arch::__cpuid_count(a, c) };
CpuIdResult {
eax: result.eax,
ebx: result.ebx,
ecx: result.ecx,
edx: result.edx,
}
}
/// The native reader uses the cpuid instruction to read the cpuid data from the
/// CPU we're currently running on directly.
#[derive(Clone, Copy)]
pub struct CpuIdReaderNative;
impl super::CpuIdReader for CpuIdReaderNative {
fn cpuid2(&self, eax: u32, ecx: u32) -> CpuIdResult {
cpuid_count(eax, ecx)
}
}
}
#[cfg(any(
all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"),
all(target_arch = "x86_64", not(target_env = "sgx"))
))]
pub use native_cpuid::CpuIdReaderNative;
/// Macro which queries cpuid directly.
///
/// First parameter is cpuid leaf (EAX register value),
/// second optional parameter is the subleaf (ECX register value).
#[cfg(any(
all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"),
all(target_arch = "x86_64", not(target_env = "sgx"))
))]
#[macro_export]
macro_rules! cpuid {
($eax:expr) => {
$crate::native_cpuid::cpuid_count($eax as u32, 0)
};
($eax:expr, $ecx:expr) => {
$crate::native_cpuid::cpuid_count($eax as u32, $ecx as u32)
};
}
fn get_bits(r: u32, from: u32, to: u32) -> u32 {
assert!(from <= 31);
assert!(to <= 31);
assert!(from <= to);
let mask = match to {
31 => 0xffffffff,
_ => (1 << (to + 1)) - 1,
};
(r & mask) >> from
}
macro_rules! check_flag {
($doc:meta, $fun:ident, $flags:ident, $flag:expr) => {
#[$doc]
pub fn $fun(&self) -> bool {
self.$flags.contains($flag)
}
};
}
macro_rules! is_bit_set {
($field:expr, $bit:expr) => {
$field & (1 << $bit) > 0
};
}
macro_rules! check_bit_fn {
($doc:meta, $fun:ident, $field:ident, $bit:expr) => {
#[$doc]
pub fn $fun(&self) -> bool {
is_bit_set!(self.$field, $bit)
}
};
}
/// Implements function to read/write cpuid.
/// This allows to conveniently swap out the underlying cpuid implementation
/// with one that returns data that is deterministic (for unit-testing).
pub trait CpuIdReader: Clone {
fn cpuid1(&self, eax: u32) -> CpuIdResult {
self.cpuid2(eax, 0)
}
fn cpuid2(&self, eax: u32, ecx: u32) -> CpuIdResult;
}
impl<F> CpuIdReader for F
where
F: Fn(u32, u32) -> CpuIdResult + Clone,
{
fn cpuid2(&self, eax: u32, ecx: u32) -> CpuIdResult {
self(eax, ecx)
}
}
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
enum Vendor {
Intel,
Amd,
Unknown(u32, u32, u32),
}
impl Vendor {
fn from_vendor_leaf(res: CpuIdResult) -> Self {
let vi = VendorInfo {
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
};
match vi.as_str() {
"GenuineIntel" => Vendor::Intel,
"AuthenticAMD" => Vendor::Amd,
_ => Vendor::Unknown(res.ebx, res.ecx, res.edx),
}
}
}
/// The main type used to query information about the CPU we're running on.
///
/// Other structs can be accessed by going through this type.
#[derive(Clone, Copy)]
pub struct CpuId<R: CpuIdReader> {
/// A generic reader to abstract the cpuid interface.
read: R,
/// CPU vendor to differentiate cases where logic needs to differ in code .
vendor: Vendor,
/// How many basic leafs are supported (EAX < EAX_HYPERVISOR_INFO)
supported_leafs: u32,
/// How many extended leafs are supported (e.g., leafs with EAX > EAX_EXTENDED_FUNCTION_INFO)
supported_extended_leafs: u32,
}
#[cfg(any(
all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"),
all(target_arch = "x86_64", not(target_env = "sgx"))
))]
impl Default for CpuId<CpuIdReaderNative> {
/// Create a new `CpuId` instance.
fn default() -> Self {
CpuId::with_cpuid_fn(CpuIdReaderNative)
}
}
#[cfg(any(
all(target_arch = "x86", not(target_env = "sgx"), target_feature = "sse"),
all(target_arch = "x86_64", not(target_env = "sgx"))
))]
impl CpuId<CpuIdReaderNative> {
/// Create a new `CpuId` instance.
pub fn new() -> Self {
CpuId::default()
}
}
/// Low-level data-structure to store result of cpuid instruction.
#[derive(Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
#[repr(C)]
pub struct CpuIdResult {
/// Return value EAX register
pub eax: u32,
/// Return value EBX register
pub ebx: u32,
/// Return value ECX register
pub ecx: u32,
/// Return value EDX register
pub edx: u32,
}
impl CpuIdResult {
pub fn all_zero(&self) -> bool {
self.eax == 0 && self.ebx == 0 && self.ecx == 0 && self.edx == 0
}
}
impl Debug for CpuIdResult {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("CpuIdResult")
.field("eax", &(self.eax as *const u32))
.field("ebx", &(self.ebx as *const u32))
.field("ecx", &(self.ecx as *const u32))
.field("edx", &(self.edx as *const u32))
.finish()
}
}
//
// Normal leafs:
//
const EAX_VENDOR_INFO: u32 = 0x0;
const EAX_FEATURE_INFO: u32 = 0x1;
const EAX_CACHE_INFO: u32 = 0x2;
const EAX_PROCESSOR_SERIAL: u32 = 0x3;
const EAX_CACHE_PARAMETERS: u32 = 0x4;
const EAX_MONITOR_MWAIT_INFO: u32 = 0x5;
const EAX_THERMAL_POWER_INFO: u32 = 0x6;
const EAX_STRUCTURED_EXTENDED_FEATURE_INFO: u32 = 0x7;
const EAX_DIRECT_CACHE_ACCESS_INFO: u32 = 0x9;
const EAX_PERFORMANCE_MONITOR_INFO: u32 = 0xA;
const EAX_EXTENDED_TOPOLOGY_INFO: u32 = 0xB;
const EAX_EXTENDED_STATE_INFO: u32 = 0xD;
const EAX_RDT_MONITORING: u32 = 0xF;
const EAX_RDT_ALLOCATION: u32 = 0x10;
const EAX_SGX: u32 = 0x12;
const EAX_TRACE_INFO: u32 = 0x14;
const EAX_TIME_STAMP_COUNTER_INFO: u32 = 0x15;
const EAX_FREQUENCY_INFO: u32 = 0x16;
const EAX_SOC_VENDOR_INFO: u32 = 0x17;
const EAX_DETERMINISTIC_ADDRESS_TRANSLATION_INFO: u32 = 0x18;
const EAX_EXTENDED_TOPOLOGY_INFO_V2: u32 = 0x1F;
/// Hypervisor leaf
const EAX_HYPERVISOR_INFO: u32 = 0x4000_0000;
//
// Extended leafs:
//
const EAX_EXTENDED_FUNCTION_INFO: u32 = 0x8000_0000;
const EAX_EXTENDED_PROCESSOR_AND_FEATURE_IDENTIFIERS: u32 = 0x8000_0001;
const EAX_EXTENDED_BRAND_STRING: u32 = 0x8000_0002;
const EAX_L1_CACHE_INFO: u32 = 0x8000_0005;
const EAX_L2_L3_CACHE_INFO: u32 = 0x8000_0006;
const EAX_ADVANCED_POWER_MGMT_INFO: u32 = 0x8000_0007;
const EAX_PROCESSOR_CAPACITY_INFO: u32 = 0x8000_0008;
const EAX_TLB_1GB_PAGE_INFO: u32 = 0x8000_0019;
const EAX_PERFORMANCE_OPTIMIZATION_INFO: u32 = 0x8000_001A;
const EAX_CACHE_PARAMETERS_AMD: u32 = 0x8000_001D;
const EAX_PROCESSOR_TOPOLOGY_INFO: u32 = 0x8000_001E;
const EAX_MEMORY_ENCRYPTION_INFO: u32 = 0x8000_001F;
const EAX_SVM_FEATURES: u32 = 0x8000_000A;
impl<R: CpuIdReader> CpuId<R> {
/// Return new CpuId struct with custom reader function.
///
/// This is useful for example when testing code or if we want to interpose
/// on the CPUID calls this library makes.
pub fn with_cpuid_reader(cpuid_fn: R) -> Self {
let vendor_leaf = cpuid_fn.cpuid1(EAX_VENDOR_INFO);
let extended_leaf = cpuid_fn.cpuid1(EAX_EXTENDED_FUNCTION_INFO);
CpuId {
supported_leafs: vendor_leaf.eax,
supported_extended_leafs: extended_leaf.eax,
vendor: Vendor::from_vendor_leaf(vendor_leaf),
read: cpuid_fn,
}
}
/// See [`CpuId::with_cpuid_reader`].
///
/// # Note
/// This function will likely be deprecated in the future. Use the identical
/// `with_cpuid_reader` function instead.
pub fn with_cpuid_fn(cpuid_fn: R) -> Self {
CpuId::with_cpuid_reader(cpuid_fn)
}
/// Check if a non extended leaf (`val`) is supported.
fn leaf_is_supported(&self, val: u32) -> bool {
// Exclude reserved functions/leafs on AMD
if self.vendor == Vendor::Amd && ((0x2..=0x4).contains(&val) || (0x8..=0xa).contains(&val))
{
return false;
}
if val < EAX_EXTENDED_FUNCTION_INFO {
val <= self.supported_leafs
} else {
val <= self.supported_extended_leafs
}
}
/// Return information about the vendor (LEAF=0x00).
///
/// This leaf will contain a ASCII readable string such as "GenuineIntel"
/// for Intel CPUs or "AuthenticAMD" for AMD CPUs.
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn get_vendor_info(&self) -> Option<VendorInfo> {
if self.leaf_is_supported(EAX_VENDOR_INFO) {
let res = self.read.cpuid1(EAX_VENDOR_INFO);
Some(VendorInfo {
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// Query a set of features that are available on this CPU (LEAF=0x01).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn get_feature_info(&self) -> Option<FeatureInfo> {
if self.leaf_is_supported(EAX_FEATURE_INFO) {
let res = self.read.cpuid1(EAX_FEATURE_INFO);
Some(FeatureInfo {
vendor: self.vendor,
eax: res.eax,
ebx: res.ebx,
edx_ecx: FeatureInfoFlags::from_bits_truncate(
((res.edx as u64) << 32) | (res.ecx as u64),
),
})
} else {
None
}
}
/// Query basic information about caches (LEAF=0x02).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_cache_info(&self) -> Option<CacheInfoIter> {
if self.leaf_is_supported(EAX_CACHE_INFO) {
let res = self.read.cpuid1(EAX_CACHE_INFO);
Some(CacheInfoIter {
current: 1,
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// Retrieve serial number of processor (LEAF=0x03).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_processor_serial(&self) -> Option<ProcessorSerial> {
if self.leaf_is_supported(EAX_PROCESSOR_SERIAL) {
// upper 64-96 bits are in res1.eax:
let res1 = self.read.cpuid1(EAX_FEATURE_INFO);
let res = self.read.cpuid1(EAX_PROCESSOR_SERIAL);
Some(ProcessorSerial {
ecx: res.ecx,
edx: res.edx,
eax: res1.eax,
})
} else {
None
}
}
/// Retrieve more elaborate information about caches (LEAF=0x04 or 0x8000_001D).
///
/// As opposed to [get_cache_info](CpuId::get_cache_info), this will tell us
/// about associativity, set size, line size of each level in the cache
/// hierarchy.
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub fn get_cache_parameters(&self) -> Option<CacheParametersIter<R>> {
if self.leaf_is_supported(EAX_CACHE_PARAMETERS)
|| (self.vendor == Vendor::Amd && self.leaf_is_supported(EAX_CACHE_PARAMETERS_AMD))
{
Some(CacheParametersIter {
read: self.read.clone(),
leaf: if self.vendor == Vendor::Amd {
EAX_CACHE_PARAMETERS_AMD
} else {
EAX_CACHE_PARAMETERS
},
current: 0,
})
} else {
None
}
}
/// Information about how monitor/mwait works on this CPU (LEAF=0x05).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub fn get_monitor_mwait_info(&self) -> Option<MonitorMwaitInfo> {
if self.leaf_is_supported(EAX_MONITOR_MWAIT_INFO) {
let res = self.read.cpuid1(EAX_MONITOR_MWAIT_INFO);
Some(MonitorMwaitInfo {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// Query information about thermal and power management features of the CPU (LEAF=0x06).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub fn get_thermal_power_info(&self) -> Option<ThermalPowerInfo> {
if self.leaf_is_supported(EAX_THERMAL_POWER_INFO) {
let res = self.read.cpuid1(EAX_THERMAL_POWER_INFO);
Some(ThermalPowerInfo {
eax: ThermalPowerFeaturesEax::from_bits_truncate(res.eax),
ebx: res.ebx,
ecx: ThermalPowerFeaturesEcx::from_bits_truncate(res.ecx),
_edx: res.edx,
})
} else {
None
}
}
/// Find out about more features supported by this CPU (LEAF=0x07).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub fn get_extended_feature_info(&self) -> Option<ExtendedFeatures> {
if self.leaf_is_supported(EAX_STRUCTURED_EXTENDED_FEATURE_INFO) {
let res = self.read.cpuid1(EAX_STRUCTURED_EXTENDED_FEATURE_INFO);
let res1 = self.read.cpuid2(EAX_STRUCTURED_EXTENDED_FEATURE_INFO, 1);
Some(ExtendedFeatures {
_eax: res.eax,
ebx: ExtendedFeaturesEbx::from_bits_truncate(res.ebx),
ecx: ExtendedFeaturesEcx::from_bits_truncate(res.ecx),
edx: ExtendedFeaturesEdx::from_bits_truncate(res.edx),
eax1: ExtendedFeaturesEax1::from_bits_truncate(res1.eax),
_ebx1: res1.ebx,
_ecx1: res1.ecx,
edx1: ExtendedFeaturesEdx1::from_bits_truncate(res1.edx),
})
} else {
None
}
}
/// Direct cache access info (LEAF=0x09).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_direct_cache_access_info(&self) -> Option<DirectCacheAccessInfo> {
if self.leaf_is_supported(EAX_DIRECT_CACHE_ACCESS_INFO) {
let res = self.read.cpuid1(EAX_DIRECT_CACHE_ACCESS_INFO);
Some(DirectCacheAccessInfo { eax: res.eax })
} else {
None
}
}
/// Info about performance monitoring (LEAF=0x0A).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_performance_monitoring_info(&self) -> Option<PerformanceMonitoringInfo> {
if self.leaf_is_supported(EAX_PERFORMANCE_MONITOR_INFO) {
let res = self.read.cpuid1(EAX_PERFORMANCE_MONITOR_INFO);
Some(PerformanceMonitoringInfo {
eax: res.eax,
ebx: PerformanceMonitoringFeaturesEbx::from_bits_truncate(res.ebx),
_ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// Information about topology (LEAF=0x0B).
///
/// Intel SDM suggests software should check support for leaf 0x1F
/// ([`CpuId::get_extended_topology_info_v2`]), and if supported, enumerate
/// that leaf instead.
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn get_extended_topology_info(&self) -> Option<ExtendedTopologyIter<R>> {
if self.leaf_is_supported(EAX_EXTENDED_TOPOLOGY_INFO) {
Some(ExtendedTopologyIter {
read: self.read.clone(),
level: 0,
is_v2: false,
})
} else {
None
}
}
/// Extended information about topology (LEAF=0x1F).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_extended_topology_info_v2(&self) -> Option<ExtendedTopologyIter<R>> {
if self.leaf_is_supported(EAX_EXTENDED_TOPOLOGY_INFO_V2) {
Some(ExtendedTopologyIter {
read: self.read.clone(),
level: 0,
is_v2: true,
})
} else {
None
}
}
/// Information for saving/restoring extended register state (LEAF=0x0D).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn get_extended_state_info(&self) -> Option<ExtendedStateInfo<R>> {
if self.leaf_is_supported(EAX_EXTENDED_STATE_INFO) {
let res = self.read.cpuid2(EAX_EXTENDED_STATE_INFO, 0);
let res1 = self.read.cpuid2(EAX_EXTENDED_STATE_INFO, 1);
Some(ExtendedStateInfo {
read: self.read.clone(),
eax: ExtendedStateInfoXCR0Flags::from_bits_truncate(res.eax),
ebx: res.ebx,
ecx: res.ecx,
_edx: res.edx,
eax1: res1.eax,
ebx1: res1.ebx,
ecx1: ExtendedStateInfoXSSFlags::from_bits_truncate(res1.ecx),
_edx1: res1.edx,
})
} else {
None
}
}
/// Quality of service monitoring information (LEAF=0x0F).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_rdt_monitoring_info(&self) -> Option<RdtMonitoringInfo<R>> {
let res = self.read.cpuid1(EAX_RDT_MONITORING);
if self.leaf_is_supported(EAX_RDT_MONITORING) {
Some(RdtMonitoringInfo {
read: self.read.clone(),
ebx: res.ebx,
edx: res.edx,
})
} else {
None
}
}
/// Quality of service enforcement information (LEAF=0x10).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_rdt_allocation_info(&self) -> Option<RdtAllocationInfo<R>> {
let res = self.read.cpuid1(EAX_RDT_ALLOCATION);
if self.leaf_is_supported(EAX_RDT_ALLOCATION) {
Some(RdtAllocationInfo {
read: self.read.clone(),
ebx: res.ebx,
})
} else {
None
}
}
/// Information about secure enclave support (LEAF=0x12).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_sgx_info(&self) -> Option<SgxInfo<R>> {
// Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
self.get_extended_feature_info().and_then(|info| {
if self.leaf_is_supported(EAX_SGX) && info.has_sgx() {
let res = self.read.cpuid2(EAX_SGX, 0);
let res1 = self.read.cpuid2(EAX_SGX, 1);
Some(SgxInfo {
read: self.read.clone(),
eax: res.eax,
ebx: res.ebx,
_ecx: res.ecx,
edx: res.edx,
eax1: res1.eax,
ebx1: res1.ebx,
ecx1: res1.ecx,
edx1: res1.edx,
})
} else {
None
}
})
}
/// Intel Processor Trace Enumeration Information (LEAF=0x14).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_processor_trace_info(&self) -> Option<ProcessorTraceInfo> {
if self.leaf_is_supported(EAX_TRACE_INFO) {
let res = self.read.cpuid2(EAX_TRACE_INFO, 0);
let res1 = if res.eax >= 1 {
Some(self.read.cpuid2(EAX_TRACE_INFO, 1))
} else {
None
};
Some(ProcessorTraceInfo {
_eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
_edx: res.edx,
leaf1: res1,
})
} else {
None
}
}
/// Time Stamp Counter/Core Crystal Clock Information (LEAF=0x15).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_tsc_info(&self) -> Option<TscInfo> {
if self.leaf_is_supported(EAX_TIME_STAMP_COUNTER_INFO) {
let res = self.read.cpuid2(EAX_TIME_STAMP_COUNTER_INFO, 0);
Some(TscInfo {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
})
} else {
None
}
}
/// Processor Frequency Information (LEAF=0x16).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_processor_frequency_info(&self) -> Option<ProcessorFrequencyInfo> {
if self.leaf_is_supported(EAX_FREQUENCY_INFO) {
let res = self.read.cpuid1(EAX_FREQUENCY_INFO);
Some(ProcessorFrequencyInfo {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
})
} else {
None
}
}
/// Contains SoC vendor specific information (LEAF=0x17).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_soc_vendor_info(&self) -> Option<SoCVendorInfo<R>> {
if self.leaf_is_supported(EAX_SOC_VENDOR_INFO) {
let res = self.read.cpuid1(EAX_SOC_VENDOR_INFO);
Some(SoCVendorInfo {
read: self.read.clone(),
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// Query deterministic address translation feature (LEAF=0x18).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn get_deterministic_address_translation_info(&self) -> Option<DatIter<R>> {
if self.leaf_is_supported(EAX_DETERMINISTIC_ADDRESS_TRANSLATION_INFO) {
let res = self
.read
.cpuid2(EAX_DETERMINISTIC_ADDRESS_TRANSLATION_INFO, 0);
Some(DatIter {
read: self.read.clone(),
current: 0,
count: res.eax,
})
} else {
None
}
}
/// Returns information provided by the hypervisor, if running
/// in a virtual environment (LEAF=0x4000_00xx).
///
/// # Platform
/// Needs to be a virtual CPU to be supported.
pub fn get_hypervisor_info(&self) -> Option<HypervisorInfo<R>> {
// We only fetch HypervisorInfo, if the Hypervisor-Flag is set.
// See https://github.com/gz/rust-cpuid/issues/52
self.get_feature_info()
.filter(|fi| fi.has_hypervisor())
.and_then(|_| {
let res = self.read.cpuid1(EAX_HYPERVISOR_INFO);
if res.eax > 0 {
Some(HypervisorInfo {
read: self.read.clone(),
res,
})
} else {
None
}
})
}
/// Extended Processor and Processor Feature Identifiers (LEAF=0x8000_0001).
///
/// # Platforms
/// ✅ AMD 🟡 Intel
pub fn get_extended_processor_and_feature_identifiers(
&self,
) -> Option<ExtendedProcessorFeatureIdentifiers> {
if self.leaf_is_supported(EAX_EXTENDED_PROCESSOR_AND_FEATURE_IDENTIFIERS) {
Some(ExtendedProcessorFeatureIdentifiers::new(
self.vendor,
self.read
.cpuid1(EAX_EXTENDED_PROCESSOR_AND_FEATURE_IDENTIFIERS),
))
} else {
None
}
}
/// Retrieve processor brand string (LEAF=0x8000_000{2..4}).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn get_processor_brand_string(&self) -> Option<ProcessorBrandString> {
if self.leaf_is_supported(EAX_EXTENDED_BRAND_STRING)
&& self.leaf_is_supported(EAX_EXTENDED_BRAND_STRING + 1)
&& self.leaf_is_supported(EAX_EXTENDED_BRAND_STRING + 2)
{
Some(ProcessorBrandString::new([
self.read.cpuid1(EAX_EXTENDED_BRAND_STRING),
self.read.cpuid1(EAX_EXTENDED_BRAND_STRING + 1),
self.read.cpuid1(EAX_EXTENDED_BRAND_STRING + 2),
]))
} else {
None
}
}
/// L1 Instruction Cache Information (LEAF=0x8000_0005)
///
/// # Platforms
/// ✅ AMD ❌ Intel (reserved)
pub fn get_l1_cache_and_tlb_info(&self) -> Option<L1CacheTlbInfo> {
if self.vendor == Vendor::Amd && self.leaf_is_supported(EAX_L1_CACHE_INFO) {
Some(L1CacheTlbInfo::new(self.read.cpuid1(EAX_L1_CACHE_INFO)))
} else {
None
}
}
/// L2/L3 Cache and TLB Information (LEAF=0x8000_0006).
///
/// # Platforms
/// ✅ AMD 🟡 Intel
pub fn get_l2_l3_cache_and_tlb_info(&self) -> Option<L2And3CacheTlbInfo> {
if self.leaf_is_supported(EAX_L2_L3_CACHE_INFO) {
Some(L2And3CacheTlbInfo::new(
self.read.cpuid1(EAX_L2_L3_CACHE_INFO),
))
} else {
None
}
}
/// Advanced Power Management Information (LEAF=0x8000_0007).
///
/// # Platforms
/// ✅ AMD 🟡 Intel
pub fn get_advanced_power_mgmt_info(&self) -> Option<ApmInfo> {
if self.leaf_is_supported(EAX_ADVANCED_POWER_MGMT_INFO) {
Some(ApmInfo::new(self.read.cpuid1(EAX_ADVANCED_POWER_MGMT_INFO)))
} else {
None
}
}
/// Processor Capacity Parameters and Extended Feature Identification (LEAF=0x8000_0008).
///
/// # Platforms
/// ✅ AMD 🟡 Intel
pub fn get_processor_capacity_feature_info(&self) -> Option<ProcessorCapacityAndFeatureInfo> {
if self.leaf_is_supported(EAX_PROCESSOR_CAPACITY_INFO) {
Some(ProcessorCapacityAndFeatureInfo::new(
self.read.cpuid1(EAX_PROCESSOR_CAPACITY_INFO),
))
} else {
None
}
}
/// This function provides information about the SVM features that the processory
/// supports. (LEAF=0x8000_000A)
///
/// If SVM is not supported if [ExtendedProcessorFeatureIdentifiers::has_svm] is
/// false, this function is reserved then.
///
/// # Platforms
/// ✅ AMD ❌ Intel
pub fn get_svm_info(&self) -> Option<SvmFeatures> {
let has_svm = self
.get_extended_processor_and_feature_identifiers()
.map_or(false, |f| f.has_svm());
if has_svm && self.leaf_is_supported(EAX_SVM_FEATURES) {
Some(SvmFeatures::new(self.read.cpuid1(EAX_SVM_FEATURES)))
} else {
None
}
}
/// TLB 1-GiB Pages Information (LEAF=0x8000_0019)
///
/// # Platforms
/// ✅ AMD ❌ Intel
pub fn get_tlb_1gb_page_info(&self) -> Option<Tlb1gbPageInfo> {
if self.leaf_is_supported(EAX_TLB_1GB_PAGE_INFO) {
Some(Tlb1gbPageInfo::new(self.read.cpuid1(EAX_TLB_1GB_PAGE_INFO)))
} else {
None
}
}
/// Informations about performance optimization (LEAF=0x8000_001A)
///
/// # Platforms
/// ✅ AMD ❌ Intel (reserved)
pub fn get_performance_optimization_info(&self) -> Option<PerformanceOptimizationInfo> {
if self.leaf_is_supported(EAX_PERFORMANCE_OPTIMIZATION_INFO) {
Some(PerformanceOptimizationInfo::new(
self.read.cpuid1(EAX_PERFORMANCE_OPTIMIZATION_INFO),
))
} else {
None
}
}
/// Informations about processor topology (LEAF=0x8000_001E)
///
/// # Platforms
/// ✅ AMD ❌ Intel (reserved)
pub fn get_processor_topology_info(&self) -> Option<ProcessorTopologyInfo> {
if self.leaf_is_supported(EAX_PROCESSOR_TOPOLOGY_INFO) {
Some(ProcessorTopologyInfo::new(
self.read.cpuid1(EAX_PROCESSOR_TOPOLOGY_INFO),
))
} else {
None
}
}
/// Informations about memory encryption support (LEAF=0x8000_001F)
///
/// # Platforms
/// ✅ AMD ❌ Intel (reserved)
pub fn get_memory_encryption_info(&self) -> Option<MemoryEncryptionInfo> {
if self.leaf_is_supported(EAX_MEMORY_ENCRYPTION_INFO) {
Some(MemoryEncryptionInfo::new(
self.read.cpuid1(EAX_MEMORY_ENCRYPTION_INFO),
))
} else {
None
}
}
}
impl<R: CpuIdReader> Debug for CpuId<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("CpuId")
.field("vendor", &self.vendor)
// .field("supported_leafs", &(self.supported_leafs as *const u32))
// .field("supported_extended_leafs", &(self.supported_extended_leafs as *const u32))
.field("vendor_info", &self.get_vendor_info())
.field("feature_info", &self.get_feature_info())
.field("cache_info", &self.get_cache_info())
.field("processor_serial", &self.get_processor_serial())
.field("cache_parameters", &self.get_cache_parameters())
.field("monitor_mwait_info", &self.get_monitor_mwait_info())
.field("thermal_power_info", &self.get_thermal_power_info())
.field("extended_feature_info", &self.get_extended_feature_info())
.field(
"direct_cache_access_info",
&self.get_direct_cache_access_info(),
)
.field(
"performance_monitoring_info",
&self.get_performance_monitoring_info(),
)
.field("extended_topology_info", &self.get_extended_topology_info())
.field("extended_state_info", &self.get_extended_state_info())
.field("rdt_monitoring_info", &self.get_rdt_monitoring_info())
.field("rdt_allocation_info", &self.get_rdt_allocation_info())
.field("sgx_info", &self.get_sgx_info())
.field("processor_trace_info", &self.get_processor_trace_info())
.field("tsc_info", &self.get_tsc_info())
.field(
"processor_frequency_info",
&self.get_processor_frequency_info(),
)
.field(
"deterministic_address_translation_info",
&self.get_deterministic_address_translation_info(),
)
.field("soc_vendor_info", &self.get_soc_vendor_info())
.field("hypervisor_info", &self.get_hypervisor_info())
.field(
"extended_processor_and_feature_identifiers",
&self.get_extended_processor_and_feature_identifiers(),
)
.field("processor_brand_string", &self.get_processor_brand_string())
.field("l1_cache_and_tlb_info", &self.get_l1_cache_and_tlb_info())
.field(
"l2_l3_cache_and_tlb_info",
&self.get_l2_l3_cache_and_tlb_info(),
)
.field(
"advanced_power_mgmt_info",
&self.get_advanced_power_mgmt_info(),
)
.field(
"processor_capacity_feature_info",
&self.get_processor_capacity_feature_info(),
)
.field("svm_info", &self.get_svm_info())
.field("tlb_1gb_page_info", &self.get_tlb_1gb_page_info())
.field(
"performance_optimization_info",
&self.get_performance_optimization_info(),
)
.field(
"processor_topology_info",
&self.get_processor_topology_info(),
)
.field("memory_encryption_info", &self.get_memory_encryption_info())
.finish()
}
}
/// Vendor Info String (LEAF=0x0)
///
/// A string that can be for example "AuthenticAMD" or "GenuineIntel".
///
/// # Technical Background
///
/// The vendor info is a 12-byte (96 bit) long string stored in `ebx`, `edx` and
/// `ecx` by the corresponding `cpuid` instruction.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[derive(PartialEq, Eq)]
#[repr(C)]
pub struct VendorInfo {
ebx: u32,
edx: u32,
ecx: u32,
}
impl VendorInfo {
/// Return vendor identification as human readable string.
pub fn as_str(&self) -> &str {
let brand_string_start = self as *const VendorInfo as *const u8;
let slice = unsafe {
// Safety: VendorInfo is laid out with repr(C) and exactly
// 12 byte long without any padding.
slice::from_raw_parts(brand_string_start, size_of::<VendorInfo>())
};
str::from_utf8(slice).unwrap_or("InvalidVendorString")
}
#[deprecated(
since = "10.0.0",
note = "Use idiomatic function name `as_str` instead"
)]
pub fn as_string(&self) -> &str {
self.as_str()
}
}
impl Debug for VendorInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("VendorInfo")
.field("brand_string", &self.as_str())
.finish()
}
}
impl fmt::Display for VendorInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.as_str())
}
}
/// Iterates over cache information (LEAF=0x02).
///
/// This will just return an index into a static table of cache descriptions
/// (see [CACHE_INFO_TABLE](crate::CACHE_INFO_TABLE)).
///
/// # Platforms
/// ❌ AMD ✅ Intel
#[derive(PartialEq, Eq, Clone)]
pub struct CacheInfoIter {
current: u32,
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl Iterator for CacheInfoIter {
type Item = CacheInfo;
/// Iterate over all cache information.
fn next(&mut self) -> Option<CacheInfo> {
// Every byte of the 4 register values returned by cpuid
// can contain information about a cache (except the
// very first one).
if self.current >= 4 * 4 {
return None;
}
let reg_index = self.current % 4;
let byte_index = self.current / 4;
let reg = match reg_index {
0 => self.eax,
1 => self.ebx,
2 => self.ecx,
3 => self.edx,
_ => unreachable!(),
};
let byte = match byte_index {
0 => reg,
1 => reg >> 8,
2 => reg >> 16,
3 => reg >> 24,
_ => unreachable!(),
} as u8;
if byte == 0 {
self.current += 1;
return self.next();
}
for cache_info in CACHE_INFO_TABLE.iter() {
if cache_info.num == byte {
self.current += 1;
return Some(*cache_info);
}
}
None
}
}
impl Debug for CacheInfoIter {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
/// What type of cache are we dealing with?
#[derive(Copy, Clone, Debug)]
pub enum CacheInfoType {
General,
Cache,
TLB,
STLB,
DTLB,
Prefetch,
}
/// Describes any kind of cache (TLB, Data and Instruction caches plus prefetchers).
#[derive(Copy, Clone)]
pub struct CacheInfo {
/// Number as retrieved from cpuid
pub num: u8,
/// Cache type
pub typ: CacheInfoType,
}
impl CacheInfo {
/// Description of the cache (from Intel Manual)
pub fn desc(&self) -> &'static str {
match self.num {
0x00 => "Null descriptor, this byte contains no information",
0x01 => "Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries",
0x02 => "Instruction TLB: 4 MByte pages, fully associative, 2 entries",
0x03 => "Data TLB: 4 KByte pages, 4-way set associative, 64 entries",
0x04 => "Data TLB: 4 MByte pages, 4-way set associative, 8 entries",
0x05 => "Data TLB1: 4 MByte pages, 4-way set associative, 32 entries",
0x06 => "1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size",
0x08 => "1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size",
0x09 => "1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size",
0x0A => "1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size",
0x0B => "Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries",
0x0C => "1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size",
0x0D => "1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size",
0x0E => "1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size",
0x1D => "2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size",
0x21 => "2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size",
0x22 => "3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector",
0x23 => "3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector",
0x24 => "2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size",
0x25 => "3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector",
0x29 => "3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector",
0x2C => "1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size",
0x30 => "1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size",
0x40 => "No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache",
0x41 => "2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size",
0x42 => "2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size",
0x43 => "2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size",
0x44 => "2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size",
0x45 => "2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size",
0x46 => "3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size",
0x47 => "3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size",
0x48 => "2nd-level cache: 3MByte, 12-way set associative, 64 byte line size",
0x49 => "3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H); 2nd-level cache: 4 MByte, 16-way set ssociative, 64 byte line size",
0x4A => "3rd-level cache: 6MByte, 12-way set associative, 64 byte line size",
0x4B => "3rd-level cache: 8MByte, 16-way set associative, 64 byte line size",
0x4C => "3rd-level cache: 12MByte, 12-way set associative, 64 byte line size",
0x4D => "3rd-level cache: 16MByte, 16-way set associative, 64 byte line size",
0x4E => "2nd-level cache: 6MByte, 24-way set associative, 64 byte line size",
0x4F => "Instruction TLB: 4 KByte pages, 32 entries",
0x50 => "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries",
0x51 => "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries",
0x52 => "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries",
0x55 => "Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries",
0x56 => "Data TLB0: 4 MByte pages, 4-way set associative, 16 entries",
0x57 => "Data TLB0: 4 KByte pages, 4-way associative, 16 entries",
0x59 => "Data TLB0: 4 KByte pages, fully associative, 16 entries",
0x5A => "Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries",
0x5B => "Data TLB: 4 KByte and 4 MByte pages, 64 entries",
0x5C => "Data TLB: 4 KByte and 4 MByte pages,128 entries",
0x5D => "Data TLB: 4 KByte and 4 MByte pages,256 entries",
0x60 => "1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size",
0x61 => "Instruction TLB: 4 KByte pages, fully associative, 48 entries",
0x63 => "Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte pages, 4-way set associative, 4 entries",
0x64 => "Data TLB: 4 KByte pages, 4-way set associative, 512 entries",
0x66 => "1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size",
0x67 => "1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size",
0x68 => "1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size",
0x6A => "uTLB: 4 KByte pages, 8-way set associative, 64 entries",
0x6B => "DTLB: 4 KByte pages, 8-way set associative, 256 entries",
0x6C => "DTLB: 2M/4M pages, 8-way set associative, 128 entries",
0x6D => "DTLB: 1 GByte pages, fully associative, 16 entries",
0x70 => "Trace cache: 12 K-μop, 8-way set associative",
0x71 => "Trace cache: 16 K-μop, 8-way set associative",
0x72 => "Trace cache: 32 K-μop, 8-way set associative",
0x76 => "Instruction TLB: 2M/4M pages, fully associative, 8 entries",
0x78 => "2nd-level cache: 1 MByte, 4-way set associative, 64byte line size",
0x79 => "2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector",
0x7A => "2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector",
0x7B => "2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector",
0x7C => "2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector",
0x7D => "2nd-level cache: 2 MByte, 8-way set associative, 64byte line size",
0x7F => "2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size",
0x80 => "2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size",
0x82 => "2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size",
0x83 => "2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size",
0x84 => "2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size",
0x85 => "2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size",
0x86 => "2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size",
0x87 => "2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size",
0xA0 => "DTLB: 4k pages, fully associative, 32 entries",
0xB0 => "Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries",
0xB1 => "Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries",
0xB2 => "Instruction TLB: 4KByte pages, 4-way set associative, 64 entries",
0xB3 => "Data TLB: 4 KByte pages, 4-way set associative, 128 entries",
0xB4 => "Data TLB1: 4 KByte pages, 4-way associative, 256 entries",
0xB5 => "Instruction TLB: 4KByte pages, 8-way set associative, 64 entries",
0xB6 => "Instruction TLB: 4KByte pages, 8-way set associative, 128 entries",
0xBA => "Data TLB1: 4 KByte pages, 4-way associative, 64 entries",
0xC0 => "Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries",
0xC1 => "Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries",
0xC2 => "DTLB: 2 MByte/$MByte pages, 4-way associative, 16 entries",
0xC3 => "Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries.",
0xC4 => "DTLB: 2M/4M Byte pages, 4-way associative, 32 entries",
0xCA => "Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries",
0xD0 => "3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size",
0xD1 => "3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size",
0xD2 => "3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size",
0xD6 => "3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size",
0xD7 => "3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size",
0xD8 => "3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size",
0xDC => "3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size",
0xDD => "3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size",
0xDE => "3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size",
0xE2 => "3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size",
0xE3 => "3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size",
0xE4 => "3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size",
0xEA => "3rd-level cache: 12MByte, 24-way set associative, 64 byte line size",
0xEB => "3rd-level cache: 18MByte, 24-way set associative, 64 byte line size",
0xEC => "3rd-level cache: 24MByte, 24-way set associative, 64 byte line size",
0xF0 => "64-Byte prefetching",
0xF1 => "128-Byte prefetching",
0xFE => "CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address translation parameters.",
0xFF => "CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters",
_ => "Unknown cache type!"
}
}
}
impl Debug for CacheInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("CacheInfo")
.field("typ", &self.typ)
.field("desc", &self.desc())
.finish()
}
}
impl fmt::Display for CacheInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let typ = match self.typ {
CacheInfoType::General => "N/A",
CacheInfoType::Cache => "Cache",
CacheInfoType::TLB => "TLB",
CacheInfoType::STLB => "STLB",
CacheInfoType::DTLB => "DTLB",
CacheInfoType::Prefetch => "Prefetcher",
};
write!(f, "{:x}:\t {}: {}", self.num, typ, self.desc())
}
}
/// This table is taken from Intel manual (Section CPUID instruction).
pub const CACHE_INFO_TABLE: [CacheInfo; 108] = [
CacheInfo {
num: 0x00,
typ: CacheInfoType::General,
},
CacheInfo {
num: 0x01,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x02,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x03,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x04,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x05,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x06,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x08,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x09,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x0A,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x0B,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x0C,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x0D,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x0E,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x21,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x22,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x23,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x24,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x25,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x29,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x2C,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x30,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x40,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x41,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x42,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x43,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x44,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x45,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x46,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x47,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x48,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x49,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4A,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4B,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4C,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4D,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4E,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x4F,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x50,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x51,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x52,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x55,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x56,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x57,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x59,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x5A,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x5B,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x5C,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x5D,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x60,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x61,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x63,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x66,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x67,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x68,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x6A,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x6B,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x6C,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x6D,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x70,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x71,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x72,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x76,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0x78,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x79,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x7A,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x7B,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x7C,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x7D,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x7F,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x80,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x82,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x83,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x84,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x85,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x86,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0x87,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xB0,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB1,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB2,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB3,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB4,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB5,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xB6,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xBA,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xC0,
typ: CacheInfoType::TLB,
},
CacheInfo {
num: 0xC1,
typ: CacheInfoType::STLB,
},
CacheInfo {
num: 0xC2,
typ: CacheInfoType::DTLB,
},
CacheInfo {
num: 0xCA,
typ: CacheInfoType::STLB,
},
CacheInfo {
num: 0xD0,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xD1,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xD2,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xD6,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xD7,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xD8,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xDC,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xDD,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xDE,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xE2,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xE3,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xE4,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xEA,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xEB,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xEC,
typ: CacheInfoType::Cache,
},
CacheInfo {
num: 0xF0,
typ: CacheInfoType::Prefetch,
},
CacheInfo {
num: 0xF1,
typ: CacheInfoType::Prefetch,
},
CacheInfo {
num: 0xFE,
typ: CacheInfoType::General,
},
CacheInfo {
num: 0xFF,
typ: CacheInfoType::General,
},
];
/// Processor Serial Number (LEAF=0x3).
///
/// # Deprecated
///
/// Processor serial number (PSN) is not supported in the Pentium 4 processor or
/// later. On all models, use the PSN flag (returned using CPUID) to check for
/// PSN support before accessing the feature.
///
/// # Platforms
/// ❌ AMD ✅ Intel
#[derive(PartialEq, Eq)]
pub struct ProcessorSerial {
/// Lower bits
ecx: u32,
/// Middle bits
edx: u32,
/// Upper bits (come from leaf 0x1)
eax: u32,
}
impl ProcessorSerial {
/// Bits 00-31 of 96 bit processor serial number.
///
/// (Available in Pentium III processor only; otherwise, the value in this register is reserved.)
pub fn serial_lower(&self) -> u32 {
self.ecx
}
/// Bits 32-63 of 96 bit processor serial number.
///
/// (Available in Pentium III processor only; otherwise, the value in this register is reserved.)
pub fn serial_middle(&self) -> u32 {
self.edx
}
/// Bits 64-96 of 96 bit processor serial number.
pub fn serial_upper(&self) -> u32 {
self.eax
}
/// Combination of bits 00-31 and 32-63 of 96 bit processor serial number.
pub fn serial(&self) -> u64 {
(self.serial_lower() as u64) | (self.serial_middle() as u64) << 32
}
/// 96 bit processor serial number.
pub fn serial_all(&self) -> u128 {
(self.serial_lower() as u128)
| ((self.serial_middle() as u128) << 32)
| ((self.serial_upper() as u128) << 64)
}
}
impl Debug for ProcessorSerial {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ProcessorSerial")
.field("serial_lower", &self.serial_lower())
.field("serial_middle", &self.serial_middle())
.finish()
}
}
/// Processor and Processor Feature Identifiers (LEAF=0x01).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub struct FeatureInfo {
vendor: Vendor,
eax: u32,
ebx: u32,
edx_ecx: FeatureInfoFlags,
}
impl FeatureInfo {
/// Version Information: Extended Family
pub fn extended_family_id(&self) -> u8 {
get_bits(self.eax, 20, 27) as u8
}
/// Version Information: Extended Model
pub fn extended_model_id(&self) -> u8 {
get_bits(self.eax, 16, 19) as u8
}
/// Version Information: Family
pub fn base_family_id(&self) -> u8 {
get_bits(self.eax, 8, 11) as u8
}
/// Version Information: Model
pub fn base_model_id(&self) -> u8 {
get_bits(self.eax, 4, 7) as u8
}
pub fn family_id(&self) -> u8 {
let base_family_id = self.base_family_id();
let extended_family_id = self.extended_family_id();
let just_use_base = (self.vendor == Vendor::Amd && base_family_id < 0xf)
|| (self.vendor == Vendor::Intel && base_family_id != 0xf);
if just_use_base {
base_family_id
} else {
base_family_id + extended_family_id
}
}
pub fn model_id(&self) -> u8 {
let base_family_id = self.base_family_id();
let base_model_id = self.base_model_id();
let extended_model_id = self.extended_model_id();
let just_use_base = (self.vendor == Vendor::Amd && base_family_id < 0xf)
|| (self.vendor == Vendor::Intel && base_family_id != 0xf && base_family_id != 0x6);
if just_use_base {
base_model_id
} else {
(extended_model_id << 4) | base_model_id
}
}
/// Version Information: Stepping ID
pub fn stepping_id(&self) -> u8 {
get_bits(self.eax, 0, 3) as u8
}
/// Brand Index
pub fn brand_index(&self) -> u8 {
get_bits(self.ebx, 0, 7) as u8
}
/// CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
pub fn cflush_cache_line_size(&self) -> u8 {
get_bits(self.ebx, 8, 15) as u8
}
/// Initial APIC ID
pub fn initial_local_apic_id(&self) -> u8 {
get_bits(self.ebx, 24, 31) as u8
}
/// Maximum number of addressable IDs for logical processors in this physical package.
pub fn max_logical_processor_ids(&self) -> u8 {
get_bits(self.ebx, 16, 23) as u8
}
check_flag!(
doc = "Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor \
supports this technology.",
has_sse3,
edx_ecx,
FeatureInfoFlags::SSE3
);
check_flag!(
doc = "PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ \
instruction",
has_pclmulqdq,
edx_ecx,
FeatureInfoFlags::PCLMULQDQ
);
check_flag!(
doc = "64-bit DS Area. A value of 1 indicates the processor supports DS area \
using 64-bit layout",
has_ds_area,
edx_ecx,
FeatureInfoFlags::DTES64
);
check_flag!(
doc = "MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.",
has_monitor_mwait,
edx_ecx,
FeatureInfoFlags::MONITOR
);
check_flag!(
doc = "CPL Qualified Debug Store. A value of 1 indicates the processor supports \
the extensions to the Debug Store feature to allow for branch message \
storage qualified by CPL.",
has_cpl,
edx_ecx,
FeatureInfoFlags::DSCPL
);
check_flag!(
doc = "Virtual Machine Extensions. A value of 1 indicates that the processor \
supports this technology.",
has_vmx,
edx_ecx,
FeatureInfoFlags::VMX
);
check_flag!(
doc = "Safer Mode Extensions. A value of 1 indicates that the processor supports \
this technology. See Chapter 5, Safer Mode Extensions Reference.",
has_smx,
edx_ecx,
FeatureInfoFlags::SMX
);
check_flag!(
doc = "Enhanced Intel SpeedStep® technology. A value of 1 indicates that the \
processor supports this technology.",
has_eist,
edx_ecx,
FeatureInfoFlags::EIST
);
check_flag!(
doc = "Thermal Monitor 2. A value of 1 indicates whether the processor supports \
this technology.",
has_tm2,
edx_ecx,
FeatureInfoFlags::TM2
);
check_flag!(
doc = "A value of 1 indicates the presence of the Supplemental Streaming SIMD \
Extensions 3 (SSSE3). A value of 0 indicates the instruction extensions \
are not present in the processor",
has_ssse3,
edx_ecx,
FeatureInfoFlags::SSSE3
);
check_flag!(
doc = "L1 Context ID. A value of 1 indicates the L1 data cache mode can be set \
to either adaptive mode or shared mode. A value of 0 indicates this \
feature is not supported. See definition of the IA32_MISC_ENABLE MSR Bit \
24 (L1 Data Cache Context Mode) for details.",
has_cnxtid,
edx_ecx,
FeatureInfoFlags::CNXTID
);
check_flag!(
doc = "A value of 1 indicates the processor supports FMA extensions using YMM \
state.",
has_fma,
edx_ecx,
FeatureInfoFlags::FMA
);
check_flag!(
doc = "CMPXCHG16B Available. A value of 1 indicates that the feature is \
available. See the CMPXCHG8B/CMPXCHG16B Compare and Exchange Bytes \
section. 14",
has_cmpxchg16b,
edx_ecx,
FeatureInfoFlags::CMPXCHG16B
);
check_flag!(
doc = "Perfmon and Debug Capability: A value of 1 indicates the processor \
supports the performance and debug feature indication MSR \
IA32_PERF_CAPABILITIES.",
has_pdcm,
edx_ecx,
FeatureInfoFlags::PDCM
);
check_flag!(
doc = "Process-context identifiers. A value of 1 indicates that the processor \
supports PCIDs and the software may set CR4.PCIDE to 1.",
has_pcid,
edx_ecx,
FeatureInfoFlags::PCID
);
check_flag!(
doc = "A value of 1 indicates the processor supports the ability to prefetch \
data from a memory mapped device.",
has_dca,
edx_ecx,
FeatureInfoFlags::DCA
);
check_flag!(
doc = "A value of 1 indicates that the processor supports SSE4.1.",
has_sse41,
edx_ecx,
FeatureInfoFlags::SSE41
);
check_flag!(
doc = "A value of 1 indicates that the processor supports SSE4.2.",
has_sse42,
edx_ecx,
FeatureInfoFlags::SSE42
);
check_flag!(
doc = "A value of 1 indicates that the processor supports x2APIC feature.",
has_x2apic,
edx_ecx,
FeatureInfoFlags::X2APIC
);
check_flag!(
doc = "A value of 1 indicates that the processor supports MOVBE instruction.",
has_movbe,
edx_ecx,
FeatureInfoFlags::MOVBE
);
check_flag!(
doc = "A value of 1 indicates that the processor supports the POPCNT instruction.",
has_popcnt,
edx_ecx,
FeatureInfoFlags::POPCNT
);
check_flag!(
doc = "A value of 1 indicates that the processors local APIC timer supports \
one-shot operation using a TSC deadline value.",
has_tsc_deadline,
edx_ecx,
FeatureInfoFlags::TSC_DEADLINE
);
check_flag!(
doc = "A value of 1 indicates that the processor supports the AESNI instruction \
extensions.",
has_aesni,
edx_ecx,
FeatureInfoFlags::AESNI
);
check_flag!(
doc = "A value of 1 indicates that the processor supports the XSAVE/XRSTOR \
processor extended states feature, the XSETBV/XGETBV instructions, and \
XCR0.",
has_xsave,
edx_ecx,
FeatureInfoFlags::XSAVE
);
check_flag!(
doc = "A value of 1 indicates that the OS has enabled XSETBV/XGETBV instructions \
to access XCR0, and support for processor extended state management using \
XSAVE/XRSTOR.",
has_oxsave,
edx_ecx,
FeatureInfoFlags::OSXSAVE
);
check_flag!(
doc = "A value of 1 indicates the processor supports the AVX instruction \
extensions.",
has_avx,
edx_ecx,
FeatureInfoFlags::AVX
);
check_flag!(
doc = "A value of 1 indicates that processor supports 16-bit floating-point \
conversion instructions.",
has_f16c,
edx_ecx,
FeatureInfoFlags::F16C
);
check_flag!(
doc = "A value of 1 indicates that processor supports RDRAND instruction.",
has_rdrand,
edx_ecx,
FeatureInfoFlags::RDRAND
);
check_flag!(
doc = "A value of 1 indicates the indicates the presence of a hypervisor.",
has_hypervisor,
edx_ecx,
FeatureInfoFlags::HYPERVISOR
);
check_flag!(
doc = "Floating Point Unit On-Chip. The processor contains an x87 FPU.",
has_fpu,
edx_ecx,
FeatureInfoFlags::FPU
);
check_flag!(
doc = "Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including \
CR4.VME for controlling the feature, CR4.PVI for protected mode virtual \
interrupts, software interrupt indirection, expansion of the TSS with the \
software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.",
has_vme,
edx_ecx,
FeatureInfoFlags::VME
);
check_flag!(
doc = "Debugging Extensions. Support for I/O breakpoints, including CR4.DE for \
controlling the feature, and optional trapping of accesses to DR4 and DR5.",
has_de,
edx_ecx,
FeatureInfoFlags::DE
);
check_flag!(
doc = "Page Size Extension. Large pages of size 4 MByte are supported, including \
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page \
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.",
has_pse,
edx_ecx,
FeatureInfoFlags::PSE
);
check_flag!(
doc = "Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD \
for controlling privilege.",
has_tsc,
edx_ecx,
FeatureInfoFlags::TSC
);
check_flag!(
doc = "Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and \
WRMSR instructions are supported. Some of the MSRs are implementation \
dependent.",
has_msr,
edx_ecx,
FeatureInfoFlags::MSR
);
check_flag!(
doc = "Physical Address Extension. Physical addresses greater than 32 bits are \
supported: extended page table entry formats, an extra level in the page \
translation tables is defined, 2-MByte pages are supported instead of 4 \
Mbyte pages if PAE bit is 1.",
has_pae,
edx_ecx,
FeatureInfoFlags::PAE
);
check_flag!(
doc = "Machine Check Exception. Exception 18 is defined for Machine Checks, \
including CR4.MCE for controlling the feature. This feature does not \
define the model-specific implementations of machine-check error logging, \
reporting, and processor shutdowns. Machine Check exception handlers may \
have to depend on processor version to do model specific processing of \
the exception, or test for the presence of the Machine Check feature.",
has_mce,
edx_ecx,
FeatureInfoFlags::MCE
);
check_flag!(
doc = "CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) \
instruction is supported (implicitly locked and atomic).",
has_cmpxchg8b,
edx_ecx,
FeatureInfoFlags::CX8
);
check_flag!(
doc = "APIC On-Chip. The processor contains an Advanced Programmable Interrupt \
Controller (APIC), responding to memory mapped commands in the physical \
address range FFFE0000H to FFFE0FFFH (by default - some processors permit \
the APIC to be relocated).",
has_apic,
edx_ecx,
FeatureInfoFlags::APIC
);
check_flag!(
doc = "SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and \
associated MSRs are supported.",
has_sysenter_sysexit,
edx_ecx,
FeatureInfoFlags::SEP
);
check_flag!(
doc = "Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR \
contains feature bits that describe what memory types are supported, how \
many variable MTRRs are supported, and whether fixed MTRRs are supported.",
has_mtrr,
edx_ecx,
FeatureInfoFlags::MTRR
);
check_flag!(
doc = "Page Global Bit. The global bit is supported in paging-structure entries \
that map a page, indicating TLB entries that are common to different \
processes and need not be flushed. The CR4.PGE bit controls this feature.",
has_pge,
edx_ecx,
FeatureInfoFlags::PGE
);
check_flag!(
doc = "Machine Check Architecture. A value of 1 indicates the Machine Check \
Architecture of reporting machine errors is supported. The MCG_CAP MSR \
contains feature bits describing how many banks of error reporting MSRs \
are supported.",
has_mca,
edx_ecx,
FeatureInfoFlags::MCA
);
check_flag!(
doc = "Conditional Move Instructions. The conditional move instruction CMOV is \
supported. In addition, if x87 FPU is present as indicated by the \
CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported",
has_cmov,
edx_ecx,
FeatureInfoFlags::CMOV
);
check_flag!(
doc = "Page Attribute Table. Page Attribute Table is supported. This feature \
augments the Memory Type Range Registers (MTRRs), allowing an operating \
system to specify attributes of memory accessed through a linear address \
on a 4KB granularity.",
has_pat,
edx_ecx,
FeatureInfoFlags::PAT
);
check_flag!(
doc = "36-Bit Page Size Extension. 4-MByte pages addressing physical memory \
beyond 4 GBytes are supported with 32-bit paging. This feature indicates \
that upper bits of the physical address of a 4-MByte page are encoded in \
bits 20:13 of the page-directory entry. Such physical addresses are \
limited by MAXPHYADDR and may be up to 40 bits in size.",
has_pse36,
edx_ecx,
FeatureInfoFlags::PSE36
);
check_flag!(
doc = "Processor Serial Number. The processor supports the 96-bit processor \
identification number feature and the feature is enabled.",
has_psn,
edx_ecx,
FeatureInfoFlags::PSN
);
check_flag!(
doc = "CLFLUSH Instruction. CLFLUSH Instruction is supported.",
has_clflush,
edx_ecx,
FeatureInfoFlags::CLFSH
);
check_flag!(
doc = "Debug Store. The processor supports the ability to write debug \
information into a memory resident buffer. This feature is used by the \
branch trace store (BTS) and processor event-based sampling (PEBS) \
facilities (see Chapter 23, Introduction to Virtual-Machine Extensions, \
in the Intel® 64 and IA-32 Architectures Software Developers Manual, \
Volume 3C).",
has_ds,
edx_ecx,
FeatureInfoFlags::DS
);
check_flag!(
doc = "Thermal Monitor and Software Controlled Clock Facilities. The processor \
implements internal MSRs that allow processor temperature to be monitored \
and processor performance to be modulated in predefined duty cycles under \
software control.",
has_acpi,
edx_ecx,
FeatureInfoFlags::ACPI
);
check_flag!(
doc = "Intel MMX Technology. The processor supports the Intel MMX technology.",
has_mmx,
edx_ecx,
FeatureInfoFlags::MMX
);
check_flag!(
doc = "FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are \
supported for fast save and restore of the floating point context. \
Presence of this bit also indicates that CR4.OSFXSR is available for an \
operating system to indicate that it supports the FXSAVE and FXRSTOR \
instructions.",
has_fxsave_fxstor,
edx_ecx,
FeatureInfoFlags::FXSR
);
check_flag!(
doc = "SSE. The processor supports the SSE extensions.",
has_sse,
edx_ecx,
FeatureInfoFlags::SSE
);
check_flag!(
doc = "SSE2. The processor supports the SSE2 extensions.",
has_sse2,
edx_ecx,
FeatureInfoFlags::SSE2
);
check_flag!(
doc = "Self Snoop. The processor supports the management of conflicting memory \
types by performing a snoop of its own cache structure for transactions \
issued to the bus.",
has_ss,
edx_ecx,
FeatureInfoFlags::SS
);
check_flag!(
doc = "Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates \
there is only a single logical processor in the package and software \
should assume only a single APIC ID is reserved. A value of 1 for HTT \
indicates the value in CPUID.1.EBX\\[23:16\\] (the Maximum number of \
addressable IDs for logical processors in this package) is valid for the \
package.",
has_htt,
edx_ecx,
FeatureInfoFlags::HTT
);
check_flag!(
doc = "Thermal Monitor. The processor implements the thermal monitor automatic \
thermal control circuitry (TCC).",
has_tm,
edx_ecx,
FeatureInfoFlags::TM
);
check_flag!(
doc = "Pending Break Enable. The processor supports the use of the FERR#/PBE# \
pin when the processor is in the stop-clock state (STPCLK# is asserted) \
to signal the processor that an interrupt is pending and that the \
processor should return to normal operation to handle the interrupt. Bit \
10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this capability.",
has_pbe,
edx_ecx,
FeatureInfoFlags::PBE
);
}
impl Debug for FeatureInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("FeatureInfo")
.field("extended_family_id", &self.extended_family_id())
.field("extended_model_id", &self.extended_model_id())
.field("family_id", &self.family_id())
.field("model_id", &self.model_id())
.field("stepping_id", &self.stepping_id())
.field("brand_index", &self.brand_index())
.field("cflush_cache_line_size", &self.cflush_cache_line_size())
.field("initial_local_apic_id", &self.initial_local_apic_id())
.field(
"max_logical_processor_ids",
&self.max_logical_processor_ids(),
)
.field("edx_ecx", &self.edx_ecx)
.finish()
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct FeatureInfoFlags: u64 {
// ECX flags
/// Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.
const SSE3 = 1 << 0;
/// PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction
const PCLMULQDQ = 1 << 1;
/// 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout
const DTES64 = 1 << 2;
/// MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.
const MONITOR = 1 << 3;
/// CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the Debug Store feature to allow for branch message storage qualified by CPL.
const DSCPL = 1 << 4;
/// Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.
const VMX = 1 << 5;
/// Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See Chapter 5, Safer Mode Extensions Reference.
const SMX = 1 << 6;
/// Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this technology.
const EIST = 1 << 7;
/// Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.
const TM2 = 1 << 8;
/// A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the instruction extensions are not present in the processor
const SSSE3 = 1 << 9;
/// L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or shared mode. A value of 0 indicates this feature is not supported. See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.
const CNXTID = 1 << 10;
/// A value of 1 indicates the processor supports FMA extensions using YMM state.
const FMA = 1 << 12;
/// CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the CMPXCHG8B/CMPXCHG16B Compare and Exchange Bytes section. 14
const CMPXCHG16B = 1 << 13;
/// Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance and debug feature indication MSR IA32_PERF_CAPABILITIES.
const PDCM = 1 << 15;
/// Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and the software may set CR4.PCIDE to 1.
const PCID = 1 << 17;
/// A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped device.
const DCA = 1 << 18;
/// A value of 1 indicates that the processor supports SSE4.1.
const SSE41 = 1 << 19;
/// A value of 1 indicates that the processor supports SSE4.2.
const SSE42 = 1 << 20;
/// A value of 1 indicates that the processor supports x2APIC feature.
const X2APIC = 1 << 21;
/// A value of 1 indicates that the processor supports MOVBE instruction.
const MOVBE = 1 << 22;
/// A value of 1 indicates that the processor supports the POPCNT instruction.
const POPCNT = 1 << 23;
/// A value of 1 indicates that the processors local APIC timer supports one-shot operation using a TSC deadline value.
const TSC_DEADLINE = 1 << 24;
/// A value of 1 indicates that the processor supports the AESNI instruction extensions.
const AESNI = 1 << 25;
/// A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states feature, the XSETBV/XGETBV instructions, and XCR0.
const XSAVE = 1 << 26;
/// A value of 1 indicates that the OS has enabled XSETBV/XGETBV instructions to access XCR0, and support for processor extended state management using XSAVE/XRSTOR.
const OSXSAVE = 1 << 27;
/// A value of 1 indicates the processor supports the AVX instruction extensions.
const AVX = 1 << 28;
/// A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.
const F16C = 1 << 29;
/// A value of 1 indicates that processor supports RDRAND instruction.
const RDRAND = 1 << 30;
/// A value of 1 indicates the indicates the presence of a hypervisor.
const HYPERVISOR = 1 << 31;
// EDX flags
/// Floating Point Unit On-Chip. The processor contains an x87 FPU.
const FPU = 1 << 32;
/// Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.
const VME = 1 << (32 + 1);
/// Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional trapping of accesses to DR4 and DR5.
const DE = 1 << (32 + 2);
/// Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.
const PSE = 1 << (32 + 3);
/// Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.
const TSC = 1 << (32 + 4);
/// Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are supported. Some of the MSRs are implementation dependent.
const MSR = 1 << (32 + 5);
/// Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte pages if PAE bit is 1.
const PAE = 1 << (32 + 6);
/// Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the feature. This feature does not define the model-specific implementations of machine-check error logging, reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor version to do model specific processing of the exception, or test for the presence of the Machine Check feature.
const MCE = 1 << (32 + 7);
/// CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly locked and atomic).
const CX8 = 1 << (32 + 8);
/// APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some processors permit the APIC to be relocated).
const APIC = 1 << (32 + 9);
/// SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.
const SEP = 1 << (32 + 11);
/// Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are supported.
const MTRR = 1 << (32 + 12);
/// Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.
const PGE = 1 << (32 + 13);
/// Machine Check Architecture. The Machine Check exArchitecture, which provides a compatible mechanism for error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.
const MCA = 1 << (32 + 14);
/// Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported
const CMOV = 1 << (32 + 15);
/// Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear address on a 4KB granularity.
const PAT = 1 << (32 + 16);
/// 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 40 bits in size.
const PSE36 = 1 << (32 + 17);
/// Processor Serial Number. The processor supports the 96-bit processor identification number feature and the feature is enabled.
const PSN = 1 << (32 + 18);
/// CLFLUSH Instruction. CLFLUSH Instruction is supported.
const CLFSH = 1 << (32 + 19);
/// Debug Store. The processor supports the ability to write debug information into a memory resident buffer. This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter 23, Introduction to Virtual-Machine Extensions, in the Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 3C).
const DS = 1 << (32 + 21);
/// Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that allow processor temperature to be monitored and processor performance to be modulated in predefined duty cycles under software control.
const ACPI = 1 << (32 + 22);
/// Intel MMX Technology. The processor supports the Intel MMX technology.
const MMX = 1 << (32 + 23);
/// FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.
const FXSR = 1 << (32 + 24);
/// SSE. The processor supports the SSE extensions.
const SSE = 1 << (32 + 25);
/// SSE2. The processor supports the SSE2 extensions.
const SSE2 = 1 << (32 + 26);
/// Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its own cache structure for transactions issued to the bus.
const SS = 1 << (32 + 27);
/// Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is valid for the package.
const HTT = 1 << (32 + 28);
/// Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).
const TM = 1 << (32 + 29);
/// Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this capability.
const PBE = 1 << (32 + 31);
}
}
/// Iterator over caches (LEAF=0x04).
///
/// Yields a [CacheParameter] for each cache.
///
/// # Platforms
/// 🟡 AMD ✅ Intel
#[derive(Clone, Copy)]
pub struct CacheParametersIter<R: CpuIdReader> {
read: R,
leaf: u32,
current: u32,
}
impl<R: CpuIdReader> Iterator for CacheParametersIter<R> {
type Item = CacheParameter;
/// Iterate over all cache info subleafs for this CPU.
///
/// # Note
/// cpuid is called every-time we advance the iterator to get information
/// about the next cache.
fn next(&mut self) -> Option<CacheParameter> {
let res = self.read.cpuid2(self.leaf, self.current);
let cp = CacheParameter {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
};
match cp.cache_type() {
CacheType::Null => None,
CacheType::Reserved => None,
_ => {
self.current += 1;
Some(cp)
}
}
}
}
impl<R: CpuIdReader> Debug for CacheParametersIter<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
/// Information about an individual cache in the hierarchy.
///
/// # Platforms
/// 🟡 AMD ✅ Intel
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct CacheParameter {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
/// Info about a what a given cache caches (instructions, data, etc.)
#[derive(PartialEq, Eq, Debug)]
pub enum CacheType {
/// Null - No more caches
Null = 0,
/// Data cache
Data,
/// Instruction cache
Instruction,
/// Data and Instruction cache
Unified,
/// 4-31 = Reserved
Reserved,
}
impl fmt::Display for CacheType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let typ = match self {
CacheType::Null => "Null",
CacheType::Data => "Data",
CacheType::Instruction => "Instruction",
CacheType::Unified => "Unified",
CacheType::Reserved => "Reserved",
};
f.write_str(typ)
}
}
impl CacheParameter {
/// Cache Type
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn cache_type(&self) -> CacheType {
let typ = get_bits(self.eax, 0, 4) as u8;
match typ {
0 => CacheType::Null,
1 => CacheType::Data,
2 => CacheType::Instruction,
3 => CacheType::Unified,
_ => CacheType::Reserved,
}
}
/// Cache Level (starts at 1)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn level(&self) -> u8 {
get_bits(self.eax, 5, 7) as u8
}
/// Self Initializing cache level (does not need SW initialization).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn is_self_initializing(&self) -> bool {
get_bits(self.eax, 8, 8) == 1
}
/// Fully Associative cache
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn is_fully_associative(&self) -> bool {
get_bits(self.eax, 9, 9) == 1
}
/// Maximum number of addressable IDs for logical processors sharing this cache
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn max_cores_for_cache(&self) -> usize {
(get_bits(self.eax, 14, 25) + 1) as usize
}
/// Maximum number of addressable IDs for processor cores in the physical package
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn max_cores_for_package(&self) -> usize {
(get_bits(self.eax, 26, 31) + 1) as usize
}
/// System Coherency Line Size (Bits 11-00)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn coherency_line_size(&self) -> usize {
(get_bits(self.ebx, 0, 11) + 1) as usize
}
/// Physical Line partitions (Bits 21-12)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn physical_line_partitions(&self) -> usize {
(get_bits(self.ebx, 12, 21) + 1) as usize
}
/// Ways of associativity (Bits 31-22)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn associativity(&self) -> usize {
(get_bits(self.ebx, 22, 31) + 1) as usize
}
/// Number of Sets (Bits 31-00)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn sets(&self) -> usize {
(self.ecx + 1) as usize
}
/// Write-Back Invalidate/Invalidate (Bit 0)
/// False: WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this cache.
/// True: WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing this cache.
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn is_write_back_invalidate(&self) -> bool {
get_bits(self.edx, 0, 0) == 1
}
/// Cache Inclusiveness (Bit 1)
/// False: Cache is not inclusive of lower cache levels.
/// True: Cache is inclusive of lower cache levels.
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn is_inclusive(&self) -> bool {
get_bits(self.edx, 1, 1) == 1
}
/// Complex Cache Indexing (Bit 2)
/// False: Direct mapped cache.
/// True: A complex function is used to index the cache, potentially using all address bits.
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub fn has_complex_indexing(&self) -> bool {
get_bits(self.edx, 2, 2) == 1
}
}
impl Debug for CacheParameter {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("CacheParameter")
.field("cache_type", &self.cache_type())
.field("level", &self.level())
.field("is_self_initializing", &self.is_self_initializing())
.field("is_fully_associative", &self.is_fully_associative())
.field("max_cores_for_cache", &self.max_cores_for_cache())
.field("max_cores_for_package", &self.max_cores_for_package())
.field("coherency_line_size", &self.coherency_line_size())
.field("physical_line_partitions", &self.physical_line_partitions())
.field("associativity", &self.associativity())
.field("sets", &self.sets())
.field("is_write_back_invalidate", &self.is_write_back_invalidate())
.field("is_inclusive", &self.is_inclusive())
.field("has_complex_indexing", &self.has_complex_indexing())
.finish()
}
}
/// Information about how monitor/mwait works on this CPU (LEAF=0x05).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
#[derive(Eq, PartialEq)]
pub struct MonitorMwaitInfo {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl MonitorMwaitInfo {
/// Smallest monitor-line size in bytes (default is processor's monitor granularity)
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn smallest_monitor_line(&self) -> u16 {
get_bits(self.eax, 0, 15) as u16
}
/// Largest monitor-line size in bytes (default is processor's monitor granularity
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn largest_monitor_line(&self) -> u16 {
get_bits(self.ebx, 0, 15) as u16
}
/// Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn extensions_supported(&self) -> bool {
get_bits(self.ecx, 0, 0) == 1
}
/// Supports treating interrupts as break-event for MWAIT, even when interrupts disabled
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn interrupts_as_break_event(&self) -> bool {
get_bits(self.ecx, 1, 1) == 1
}
/// Number of C0 sub C-states supported using MWAIT (Bits 03 - 00)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c0_states(&self) -> u16 {
get_bits(self.edx, 0, 3) as u16
}
/// Number of C1 sub C-states supported using MWAIT (Bits 07 - 04)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c1_states(&self) -> u16 {
get_bits(self.edx, 4, 7) as u16
}
/// Number of C2 sub C-states supported using MWAIT (Bits 11 - 08)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c2_states(&self) -> u16 {
get_bits(self.edx, 8, 11) as u16
}
/// Number of C3 sub C-states supported using MWAIT (Bits 15 - 12)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c3_states(&self) -> u16 {
get_bits(self.edx, 12, 15) as u16
}
/// Number of C4 sub C-states supported using MWAIT (Bits 19 - 16)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c4_states(&self) -> u16 {
get_bits(self.edx, 16, 19) as u16
}
/// Number of C5 sub C-states supported using MWAIT (Bits 23 - 20)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c5_states(&self) -> u16 {
get_bits(self.edx, 20, 23) as u16
}
/// Number of C6 sub C-states supported using MWAIT (Bits 27 - 24)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c6_states(&self) -> u16 {
get_bits(self.edx, 24, 27) as u16
}
/// Number of C7 sub C-states supported using MWAIT (Bits 31 - 28)
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn supported_c7_states(&self) -> u16 {
get_bits(self.edx, 28, 31) as u16
}
}
impl Debug for MonitorMwaitInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("MonitorMwaitInfo")
.field("smallest_monitor_line", &self.smallest_monitor_line())
.field("largest_monitor_line", &self.largest_monitor_line())
.field("extensions_supported", &self.extensions_supported())
.field(
"interrupts_as_break_event",
&self.interrupts_as_break_event(),
)
.field("supported_c0_states", &self.supported_c0_states())
.field("supported_c1_states", &self.supported_c1_states())
.field("supported_c2_states", &self.supported_c2_states())
.field("supported_c3_states", &self.supported_c3_states())
.field("supported_c4_states", &self.supported_c4_states())
.field("supported_c5_states", &self.supported_c5_states())
.field("supported_c6_states", &self.supported_c6_states())
.field("supported_c7_states", &self.supported_c7_states())
.finish()
}
}
/// Query information about thermal and power management features of the CPU (LEAF=0x06).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub struct ThermalPowerInfo {
eax: ThermalPowerFeaturesEax,
ebx: u32,
ecx: ThermalPowerFeaturesEcx,
_edx: u32,
}
impl ThermalPowerInfo {
/// Number of Interrupt Thresholds in Digital Thermal Sensor
///
/// # Platforms
/// ❌ AMD (undefined/reserved) ✅ Intel
pub fn dts_irq_threshold(&self) -> u8 {
get_bits(self.ebx, 0, 3) as u8
}
/// Digital temperature sensor is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_dts(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::DTS)
}
/// Intel Turbo Boost Technology Available (see description of
/// IA32_MISC_ENABLE\[38\]).
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_turbo_boost(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::TURBO_BOOST)
}
/// ARAT. APIC-Timer-always-running feature is supported if set.
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn has_arat(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::ARAT)
}
/// PLN. Power limit notification controls are supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_pln(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::PLN)
}
/// ECMD. Clock modulation duty cycle extension is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_ecmd(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::ECMD)
}
/// PTM. Package thermal management is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_ptm(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::PTM)
}
/// HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
/// IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::HWP)
}
/// HWP Notification. IA32_HWP_INTERRUPT MSR is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_notification(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::HWP_NOTIFICATION)
}
/// HWP Activity Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_activity_window(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::HWP_ACTIVITY_WINDOW)
}
/// HWP Energy Performance Preference. IA32_HWP_REQUEST[bits 31:24] is
/// supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_energy_performance_preference(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::HWP_ENERGY_PERFORMANCE_PREFERENCE)
}
/// HWP Package Level Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_package_level_request(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::HWP_PACKAGE_LEVEL_REQUEST)
}
/// HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1,
/// IA32_THREAD_STALL MSRs are supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hdc(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::HDC)
}
/// Intel® Turbo Boost Max Technology 3.0 available.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_turbo_boost3(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::TURBO_BOOST_3)
}
/// HWP Capabilities. Highest Performance change is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_capabilities(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::HWP_CAPABILITIES)
}
/// HWP PECI override is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_peci_override(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::HWP_PECI_OVERRIDE)
}
/// Flexible HWP is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_flexible_hwp(&self) -> bool {
self.eax.contains(ThermalPowerFeaturesEax::FLEXIBLE_HWP)
}
/// Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_hwp_fast_access_mode(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::HWP_REQUEST_MSR_FAST_ACCESS)
}
/// Ignoring Idle Logical Processor HWP request is supported if set.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_ignore_idle_processor_hwp_request(&self) -> bool {
self.eax
.contains(ThermalPowerFeaturesEax::IGNORE_IDLE_PROCESSOR_HWP_REQUEST)
}
/// Hardware Coordination Feedback Capability
///
/// Presence of IA32_MPERF and IA32_APERF.
///
/// The capability to provide a measure of delivered processor performance
/// (since last reset of the counters), as a percentage of expected
/// processor performance at frequency specified in CPUID Brand String Bits
/// 02 - 01
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub fn has_hw_coord_feedback(&self) -> bool {
self.ecx
.contains(ThermalPowerFeaturesEcx::HW_COORD_FEEDBACK)
}
/// The processor supports performance-energy bias preference if
/// CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
/// new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub fn has_energy_bias_pref(&self) -> bool {
self.ecx.contains(ThermalPowerFeaturesEcx::ENERGY_BIAS_PREF)
}
}
impl Debug for ThermalPowerInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ThermalPowerInfo")
.field("dts_irq_threshold", &self.dts_irq_threshold())
.field("has_dts", &self.has_dts())
.field("has_arat", &self.has_arat())
.field("has_pln", &self.has_pln())
.field("has_ecmd", &self.has_ecmd())
.field("has_ptm", &self.has_ptm())
.field("has_hwp", &self.has_hwp())
.field("has_hwp_notification", &self.has_hwp_notification())
.field("has_hwp_activity_window", &self.has_hwp_activity_window())
.field(
"has_hwp_energy_performance_preference",
&self.has_hwp_energy_performance_preference(),
)
.field(
"has_hwp_package_level_request",
&self.has_hwp_package_level_request(),
)
.field("has_hdc", &self.has_hdc())
.field("has_turbo_boost3", &self.has_turbo_boost3())
.field("has_hwp_capabilities", &self.has_hwp_capabilities())
.field("has_hwp_peci_override", &self.has_hwp_peci_override())
.field("has_flexible_hwp", &self.has_flexible_hwp())
.field("has_hwp_fast_access_mode", &self.has_hwp_fast_access_mode())
.field(
"has_ignore_idle_processor_hwp_request",
&self.has_ignore_idle_processor_hwp_request(),
)
.field("has_hw_coord_feedback", &self.has_hw_coord_feedback())
.field("has_energy_bias_pref", &self.has_energy_bias_pref())
.finish()
}
}
bitflags! {
struct ThermalPowerFeaturesEax: u32 {
/// Digital temperature sensor is supported if set. (Bit 00)
const DTS = 1 << 0;
/// Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]). (Bit 01)
const TURBO_BOOST = 1 << 1;
/// ARAT. APIC-Timer-always-running feature is supported if set. (Bit 02)
const ARAT = 1 << 2;
/// Bit 3: Reserved.
const RESERVED_3 = 1 << 3;
/// PLN. Power limit notification controls are supported if set. (Bit 04)
const PLN = 1 << 4;
/// ECMD. Clock modulation duty cycle extension is supported if set. (Bit 05)
const ECMD = 1 << 5;
/// PTM. Package thermal management is supported if set. (Bit 06)
const PTM = 1 << 6;
/// Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
const HWP = 1 << 7;
/// Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
const HWP_NOTIFICATION = 1 << 8;
/// Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
const HWP_ACTIVITY_WINDOW = 1 << 9;
/// Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
const HWP_ENERGY_PERFORMANCE_PREFERENCE = 1 << 10;
/// Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
const HWP_PACKAGE_LEVEL_REQUEST = 1 << 11;
/// Bit 12: Reserved.
const RESERVED_12 = 1 << 12;
/// Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are supported if set.
const HDC = 1 << 13;
/// Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
const TURBO_BOOST_3 = 1 << 14;
/// Bit 15: HWP Capabilities. Highest Performance change is supported if set.
const HWP_CAPABILITIES = 1 << 15;
/// Bit 16: HWP PECI override is supported if set.
const HWP_PECI_OVERRIDE = 1 << 16;
/// Bit 17: Flexible HWP is supported if set.
const FLEXIBLE_HWP = 1 << 17;
/// Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
const HWP_REQUEST_MSR_FAST_ACCESS = 1 << 18;
/// Bit 19: Reserved.
const RESERVED_19 = 1 << 19;
/// Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
const IGNORE_IDLE_PROCESSOR_HWP_REQUEST = 1 << 20;
// Bits 31 - 21: Reserved
}
}
bitflags! {
struct ThermalPowerFeaturesEcx: u32 {
const HW_COORD_FEEDBACK = 1 << 0;
/// The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
const ENERGY_BIAS_PREF = 1 << 3;
}
}
/// Structured Extended Feature Identifiers (LEAF=0x07).
///
/// # Platforms
/// 🟡 AMD ✅ Intel
pub struct ExtendedFeatures {
_eax: u32,
ebx: ExtendedFeaturesEbx,
ecx: ExtendedFeaturesEcx,
edx: ExtendedFeaturesEdx,
eax1: ExtendedFeaturesEax1,
_ebx1: u32,
_ecx1: u32,
edx1: ExtendedFeaturesEdx1,
}
impl ExtendedFeatures {
/// FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_fsgsbase(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::FSGSBASE)
}
/// IA32_TSC_ADJUST MSR is supported if 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_tsc_adjust_msr(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::ADJUST_MSR)
}
/// BMI1
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_bmi1(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::BMI1)
}
/// HLE
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_hle(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::HLE)
}
/// AVX2
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx2(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX2)
}
/// FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if
/// 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_fdp(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::FDP)
}
/// SMEP. Supports Supervisor-Mode Execution Prevention if 1.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_smep(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::SMEP)
}
/// BMI2
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_bmi2(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::BMI2)
}
/// Supports Enhanced REP MOVSB/STOSB if 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_rep_movsb_stosb(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::REP_MOVSB_STOSB)
}
/// INVPCID. If 1, supports INVPCID instruction for system software that
/// manages process-context identifiers.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_invpcid(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::INVPCID)
}
/// RTM
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_rtm(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::RTM)
}
/// Supports Intel Resource Director Technology (RDT) Monitoring capability.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_rdtm(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::RDTM)
}
/// Deprecates FPU CS and FPU DS values if 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_fpu_cs_ds_deprecated(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::DEPRECATE_FPU_CS_DS)
}
/// MPX. Supports Intel Memory Protection Extensions if 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_mpx(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::MPX)
}
/// Supports Intel Resource Director Technology (RDT) Allocation capability.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_rdta(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::RDTA)
}
/// Supports RDSEED.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_rdseed(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::RDSEED)
}
/// Supports ADX.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_adx(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::ADX)
}
/// SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC
/// instructions) if 1.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_smap(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::SMAP)
}
/// Supports CLFLUSHOPT.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_clflushopt(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::CLFLUSHOPT)
}
/// Supports Intel Processor Trace.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_processor_trace(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::PROCESSOR_TRACE)
}
/// Supports SHA Instructions.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_sha(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::SHA)
}
/// Supports Intel® Software Guard Extensions (Intel® SGX Extensions).
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_sgx(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::SGX)
}
/// Supports AVX512F.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512f(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512F)
}
/// Supports AVX512DQ.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512dq(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512DQ)
}
/// AVX512_IFMA
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512_ifma(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512_IFMA)
}
/// AVX512PF
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512pf(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512PF)
}
/// AVX512ER
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512er(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512ER)
}
/// AVX512CD
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512cd(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512CD)
}
/// AVX512BW
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512bw(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512BW)
}
/// AVX512VL
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512vl(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::AVX512VL)
}
/// CLWB
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_clwb(&self) -> bool {
self.ebx.contains(ExtendedFeaturesEbx::CLWB)
}
/// Has PREFETCHWT1 (Intel® Xeon Phi™ only).
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_prefetchwt1(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::PREFETCHWT1)
}
/// Supports user-mode instruction prevention if 1.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_umip(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::UMIP)
}
/// Supports protection keys for user-mode pages.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_pku(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::PKU)
}
/// OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU
/// instructions.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_ospke(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::OSPKE)
}
/// WAITPKG
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_waitpkg(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::WAITPKG)
}
/// AVX512VBMI2
///
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_av512vbmi2(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::AVX512VBMI2)
}
/// Supports CET shadow stack features. Processors that set this bit define bits 0..2 of the
/// IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs:
/// IA32_INTERRUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_cet_ss(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::GFNI)
}
/// GFNI
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_gfni(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::GFNI)
}
/// VAES
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_vaes(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::VAES)
}
/// VPCLMULQDQ
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_vpclmulqdq(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::VPCLMULQDQ)
}
/// AVX512VNNI
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512vnni(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::AVX512VNNI)
}
/// AVX512BITALG
///
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512bitalg(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::AVX512BITALG)
}
/// Indicates the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE,
/// IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
///
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_tme_en(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::TMEEN)
}
/// AVX512VPOPCNTDQ
///
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_avx512vpopcntdq(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::AVX512VPOPCNTDQ)
}
/// Supports 57-bit linear addresses and five-level paging if 1.
///
/// # Platforms
/// ❓ AMD ✅ Intel
#[inline]
pub const fn has_la57(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::LA57)
}
/// RDPID and IA32_TSC_AUX are available.
///
/// # Bug
/// The Intel manual lists RDPID as bit 22 in the ECX register, but AMD
/// lists it as bit 22 in the ebx register. We assumed that the AMD manual
/// was wrong and query ecx, let's see what happens.
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[inline]
pub const fn has_rdpid(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::RDPID)
}
/// Supports SGX Launch Configuration.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_sgx_lc(&self) -> bool {
self.ecx.contains(ExtendedFeaturesEcx::SGX_LC)
}
/// The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub fn mawau_value(&self) -> u8 {
get_bits(self.ecx.bits(), 17, 21) as u8
}
/// Supports AVX512_4VNNIW.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx512_4vnniw(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AVX512_4VNNIW)
}
/// Supports AVX512_4FMAPS.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx512_4fmaps(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AVX512_4FMAPS)
}
/// Supports AVX512_VP2INTERSECT.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx512_vp2intersect(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AVX512_VP2INTERSECT)
}
/// Supports AMX_BF16.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_amx_bf16(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AMX_BF16)
}
/// Supports AVX512_FP16.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx512_fp16(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AVX512_FP16)
}
/// Supports AMX_TILE.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_amx_tile(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AMX_TILE)
}
/// Supports AMX_INT8.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_amx_int8(&self) -> bool {
self.edx.contains(ExtendedFeaturesEdx::AMX_INT8)
}
/// Supports AVX_VNNI.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx_vnni(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::AVX_VNNI)
}
/// Supports AVX512_BF16.
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_avx512_bf16(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::AVX512_BF16)
}
/// Supports Fast zero-length REP MOVSB
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_fzrm(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::FZRM)
}
/// Supports Fast Short REP STOSB
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_fsrs(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::FSRS)
}
/// Supports Fast Short REP CMPSB, REP SCASB
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_fsrcrs(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::FSRCRS)
}
/// Supports HRESET
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_hreset(&self) -> bool {
self.eax1.contains(ExtendedFeaturesEax1::HRESET)
}
/// Supports CET_SSS
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
#[inline]
pub const fn has_cet_sss(&self) -> bool {
self.edx1.contains(ExtendedFeaturesEdx1::CET_SSS)
}
}
impl Debug for ExtendedFeatures {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ExtendedFeatures")
.field("ebx", &self.ebx)
.field("ecx", &self.ecx)
.field("mawau_value", &self.mawau_value())
.finish()
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedFeaturesEbx: u32 {
/// FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1. (Bit 00)
const FSGSBASE = 1 << 0;
/// IA32_TSC_ADJUST MSR is supported if 1. (Bit 01)
const ADJUST_MSR = 1 << 1;
/// Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
const SGX = 1 << 2;
/// BMI1 (Bit 03)
const BMI1 = 1 << 3;
/// HLE (Bit 04)
const HLE = 1 << 4;
/// AVX2 (Bit 05)
const AVX2 = 1 << 5;
/// FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
const FDP = 1 << 6;
/// SMEP. Supports Supervisor-Mode Execution Prevention if 1. (Bit 07)
const SMEP = 1 << 7;
/// BMI2 (Bit 08)
const BMI2 = 1 << 8;
/// Supports Enhanced REP MOVSB/STOSB if 1. (Bit 09)
const REP_MOVSB_STOSB = 1 << 9;
/// INVPCID. If 1, supports INVPCID instruction for system software that manages process-context identifiers. (Bit 10)
const INVPCID = 1 << 10;
/// RTM (Bit 11)
const RTM = 1 << 11;
/// Supports Intel Resource Director Technology (RDT) Monitoring. (Bit 12)
const RDTM = 1 << 12;
/// Deprecates FPU CS and FPU DS values if 1. (Bit 13)
const DEPRECATE_FPU_CS_DS = 1 << 13;
/// Deprecates FPU CS and FPU DS values if 1. (Bit 14)
const MPX = 1 << 14;
/// Supports Intel Resource Director Technology (RDT) Allocation capability if 1.
const RDTA = 1 << 15;
/// Bit 16: AVX512F.
const AVX512F = 1 << 16;
/// Bit 17: AVX512DQ.
const AVX512DQ = 1 << 17;
/// Supports RDSEED.
const RDSEED = 1 << 18;
/// Supports ADX.
const ADX = 1 << 19;
/// SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
const SMAP = 1 << 20;
/// Bit 21: AVX512_IFMA.
const AVX512_IFMA = 1 << 21;
// Bit 22: Reserved.
/// Bit 23: CLFLUSHOPT
const CLFLUSHOPT = 1 << 23;
/// Bit 24: CLWB.
const CLWB = 1 << 24;
/// Bit 25: Intel Processor Trace
const PROCESSOR_TRACE = 1 << 25;
/// Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
const AVX512PF = 1 << 26;
/// Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
const AVX512ER = 1 << 27;
/// Bit 28: AVX512CD.
const AVX512CD = 1 << 28;
/// Bit 29: Intel SHA Extensions
const SHA = 1 << 29;
/// Bit 30: AVX512BW.
const AVX512BW = 1 << 30;
/// Bit 31: AVX512VL.
const AVX512VL = 1 << 31;
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedFeaturesEcx: u32 {
/// Bit 0: Prefetch WT1. (Intel® Xeon Phi™ only).
const PREFETCHWT1 = 1 << 0;
// Bit 01: AVX512_VBMI
const AVX512VBMI = 1 << 1;
/// Bit 02: UMIP. Supports user-mode instruction prevention if 1.
const UMIP = 1 << 2;
/// Bit 03: PKU. Supports protection keys for user-mode pages if 1.
const PKU = 1 << 3;
/// Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-tions).
const OSPKE = 1 << 4;
/// Bit 5: WAITPKG
const WAITPKG = 1 << 5;
/// Bit 6: AV512_VBMI2
const AVX512VBMI2 = 1 << 6;
/// Bit 7: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 0..2 of the
/// IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs:
/// IA32_INTERRUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
const CETSS = 1 << 7;
/// Bit 8: GFNI
const GFNI = 1 << 8;
/// Bit 9: VAES
const VAES = 1 << 9;
/// Bit 10: VPCLMULQDQ
const VPCLMULQDQ = 1 << 10;
/// Bit 11: AVX512_VNNI
const AVX512VNNI = 1 << 11;
/// Bit 12: AVX512_BITALG
const AVX512BITALG = 1 << 12;
/// Bit 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE,
/// IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
const TMEEN = 1 << 13;
/// Bit 14: AVX512_VPOPCNTDQ
const AVX512VPOPCNTDQ = 1 << 14;
// Bit 15: Reserved.
/// Bit 16: Supports 57-bit linear addresses and five-level paging if 1.
const LA57 = 1 << 16;
// Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode
/// Bit 22: RDPID. RDPID and IA32_TSC_AUX are available if 1.
const RDPID = 1 << 22;
// Bits 29 - 23: Reserved.
/// Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
const SGX_LC = 1 << 30;
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedFeaturesEdx: u32 {
/// Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only).
const AVX512_4VNNIW = 1 << 2;
/// Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only).
const AVX512_4FMAPS = 1 << 3;
/// Bit 08: AVX512_VP2INTERSECT.
const AVX512_VP2INTERSECT = 1 << 8;
/// Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
const AMX_BF16 = 1 << 22;
/// Bit 23: AVX512_FP16.
const AVX512_FP16 = 1 << 23;
/// Bit 24: AMX-TILE. If 1, the processor supports tile architecture
const AMX_TILE = 1 << 24;
/// Bit 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.
const AMX_INT8 = 1 << 25;
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedFeaturesEax1: u32 {
// Some of the Unimplemented bits are reserved and maybe release in future CPUs, see Intel SDM for future features (Date of comment: 07.17.2024)
/// Bit 04: AVX_VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.
const AVX_VNNI = 1 << 4;
/// Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
const AVX512_BF16 = 1 << 5;
/// Bit 10: If 1, supports fast zero-length REP MOVSB.
const FZRM = 1 << 10;
/// Bit 11: If 1, supports fast short REP STOSB.
const FSRS = 1 << 11;
/// Bit 12: If 1, supports fast short REP CMPSB, REP SCASB.
const FSRCRS = 1 << 12;
/// Bit 22: If 1, supports history reset via the HRESET instruction and the IA32_HRESET_ENABLE MSR. When set, indicates that the Processor History Reset Leaf (EAX = 20H) is valid.
const HRESET = 1 << 22;
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedFeaturesEdx1: u32 {
// Some of the Unimplemented bits are reserved and maybe release in future CPUs, see Intel SDM for future features (Date of comment: 07.17.2024)
/// Bit 18: CET_SSS. If 1, indicates that an operating system can enable supervisor shadow stacks as long as it ensures that a supervisor shadow stack cannot become prematurely busy due to page faults
const CET_SSS = 1 << 18;
}
}
/// Direct cache access info (LEAF=0x09).
///
/// # Platforms
/// ❌ AMD (reserved) ✅ Intel
pub struct DirectCacheAccessInfo {
eax: u32,
}
impl DirectCacheAccessInfo {
/// Value of bits \[31:0\] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
pub fn get_dca_cap_value(&self) -> u32 {
self.eax
}
}
impl Debug for DirectCacheAccessInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("DirectCacheAccessInfo")
.field("dca_cap_value", &self.get_dca_cap_value())
.finish()
}
}
/// Info about performance monitoring -- how many counters etc. (LEAF=0x0A)
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct PerformanceMonitoringInfo {
eax: u32,
ebx: PerformanceMonitoringFeaturesEbx,
_ecx: u32,
edx: u32,
}
impl PerformanceMonitoringInfo {
/// Version ID of architectural performance monitoring. (Bits 07 - 00)
pub fn version_id(&self) -> u8 {
get_bits(self.eax, 0, 7) as u8
}
/// Number of general-purpose performance monitoring counter per logical processor. (Bits 15- 08)
pub fn number_of_counters(&self) -> u8 {
get_bits(self.eax, 8, 15) as u8
}
/// Bit width of general-purpose, performance monitoring counter. (Bits 23 - 16)
pub fn counter_bit_width(&self) -> u8 {
get_bits(self.eax, 16, 23) as u8
}
/// Length of EBX bit vector to enumerate architectural performance monitoring events. (Bits 31 - 24)
pub fn ebx_length(&self) -> u8 {
get_bits(self.eax, 24, 31) as u8
}
/// Number of fixed-function performance counters (if Version ID > 1). (Bits 04 - 00)
pub fn fixed_function_counters(&self) -> u8 {
get_bits(self.edx, 0, 4) as u8
}
/// Bit width of fixed-function performance counters (if Version ID > 1). (Bits 12- 05)
pub fn fixed_function_counters_bit_width(&self) -> u8 {
get_bits(self.edx, 5, 12) as u8
}
check_bit_fn!(
doc = "AnyThread deprecation",
has_any_thread_deprecation,
edx,
15
);
check_flag!(
doc = "Core cycle event not available if 1.",
is_core_cyc_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::CORE_CYC_EV_UNAVAILABLE
);
check_flag!(
doc = "Instruction retired event not available if 1.",
is_inst_ret_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::INST_RET_EV_UNAVAILABLE
);
check_flag!(
doc = "Reference cycles event not available if 1.",
is_ref_cycle_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::REF_CYC_EV_UNAVAILABLE
);
check_flag!(
doc = "Last-level cache reference event not available if 1.",
is_cache_ref_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::CACHE_REF_EV_UNAVAILABLE
);
check_flag!(
doc = "Last-level cache misses event not available if 1.",
is_ll_cache_miss_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::LL_CACHE_MISS_EV_UNAVAILABLE
);
check_flag!(
doc = "Branch instruction retired event not available if 1.",
is_branch_inst_ret_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::BRANCH_INST_RET_EV_UNAVAILABLE
);
check_flag!(
doc = "Branch mispredict retired event not available if 1.",
is_branch_midpred_ev_unavailable,
ebx,
PerformanceMonitoringFeaturesEbx::BRANCH_MISPRED_EV_UNAVAILABLE
);
}
impl Debug for PerformanceMonitoringInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("PerformanceMonitoringInfo")
.field("version_id", &self.version_id())
.field("number_of_counters", &self.number_of_counters())
.field("counter_bit_width", &self.counter_bit_width())
.field("ebx_length", &self.ebx_length())
.field("fixed_function_counters", &self.fixed_function_counters())
.field(
"fixed_function_counters_bit_width",
&self.fixed_function_counters_bit_width(),
)
.finish()
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct PerformanceMonitoringFeaturesEbx: u32 {
/// Core cycle event not available if 1. (Bit 0)
const CORE_CYC_EV_UNAVAILABLE = 1 << 0;
/// Instruction retired event not available if 1. (Bit 01)
const INST_RET_EV_UNAVAILABLE = 1 << 1;
/// Reference cycles event not available if 1. (Bit 02)
const REF_CYC_EV_UNAVAILABLE = 1 << 2;
/// Last-level cache reference event not available if 1. (Bit 03)
const CACHE_REF_EV_UNAVAILABLE = 1 << 3;
/// Last-level cache misses event not available if 1. (Bit 04)
const LL_CACHE_MISS_EV_UNAVAILABLE = 1 << 4;
/// Branch instruction retired event not available if 1. (Bit 05)
const BRANCH_INST_RET_EV_UNAVAILABLE = 1 << 5;
/// Branch mispredict retired event not available if 1. (Bit 06)
const BRANCH_MISPRED_EV_UNAVAILABLE = 1 << 6;
}
}
/// Information about topology (LEAF=0x0B).
///
/// Iterates over the system topology in order to retrieve more system
/// information at each level of the topology: how many cores and what kind of
/// cores
///
/// # Platforms
/// ✅ AMD ✅ Intel
#[derive(Clone)]
pub struct ExtendedTopologyIter<R: CpuIdReader> {
read: R,
level: u32,
is_v2: bool,
}
/// Gives information about the current level in the topology.
///
/// How many cores, what type etc.
#[derive(PartialEq, Eq)]
pub struct ExtendedTopologyLevel {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl fmt::Debug for ExtendedTopologyLevel {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ExtendedTopologyLevel")
.field("processors", &self.processors())
.field("number", &self.level_number())
.field("type", &self.level_type())
.field("x2apic_id", &self.x2apic_id())
.field("next_apic_id", &self.shift_right_for_next_apic_id())
.finish()
}
}
impl ExtendedTopologyLevel {
/// Number of logical processors at this level type.
/// The number reflects configuration as shipped.
pub fn processors(&self) -> u16 {
get_bits(self.ebx, 0, 15) as u16
}
/// Level number.
pub fn level_number(&self) -> u8 {
get_bits(self.ecx, 0, 7) as u8
}
// Level type.
pub fn level_type(&self) -> TopologyType {
match get_bits(self.ecx, 8, 15) {
0 => TopologyType::Invalid,
1 => TopologyType::SMT,
2 => TopologyType::Core,
3 => TopologyType::Module,
4 => TopologyType::Tile,
5 => TopologyType::Die,
_ => unreachable!(),
}
}
/// x2APIC ID the current logical processor. (Bits 31-00)
pub fn x2apic_id(&self) -> u32 {
self.edx
}
/// Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type. (Bits 04-00)
/// All logical processors with the same next level ID share current level.
pub fn shift_right_for_next_apic_id(&self) -> u32 {
get_bits(self.eax, 0, 4)
}
}
/// What type of core we have at this level in the topology (real CPU or hyper-threaded).
#[derive(PartialEq, Eq, Debug)]
pub enum TopologyType {
Invalid = 0,
/// Hyper-thread (Simultaneous multithreading)
SMT = 1,
Core = 2,
Module = 3,
Tile = 4,
Die = 5,
}
impl fmt::Display for TopologyType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let data = match self {
TopologyType::Invalid => "Invalid",
TopologyType::SMT => "SMT",
TopologyType::Core => "Core",
TopologyType::Module => "Module",
TopologyType::Tile => "Tile",
TopologyType::Die => "Die",
};
f.write_str(data)
}
}
impl<R: CpuIdReader> Iterator for ExtendedTopologyIter<R> {
type Item = ExtendedTopologyLevel;
fn next(&mut self) -> Option<ExtendedTopologyLevel> {
let res = if self.is_v2 {
self.read.cpuid2(EAX_EXTENDED_TOPOLOGY_INFO_V2, self.level)
} else {
self.read.cpuid2(EAX_EXTENDED_TOPOLOGY_INFO, self.level)
};
self.level += 1;
let et = ExtendedTopologyLevel {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
};
match et.level_type() {
TopologyType::Invalid => None,
_ => Some(et),
}
}
}
impl<R: CpuIdReader> Debug for ExtendedTopologyIter<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedStateInfoXCR0Flags: u32 {
/// legacy x87 (Bit 00).
const LEGACY_X87 = 1 << 0;
/// 128-bit SSE (Bit 01).
const SSE128 = 1 << 1;
/// 256-bit AVX (Bit 02).
const AVX256 = 1 << 2;
/// MPX BNDREGS (Bit 03).
const MPX_BNDREGS = 1 << 3;
/// MPX BNDCSR (Bit 04).
const MPX_BNDCSR = 1 << 4;
/// AVX512 OPMASK (Bit 05).
const AVX512_OPMASK = 1 << 5;
/// AVX ZMM Hi256 (Bit 06).
const AVX512_ZMM_HI256 = 1 << 6;
/// AVX 512 ZMM Hi16 (Bit 07).
const AVX512_ZMM_HI16 = 1 << 7;
/// PKRU state (Bit 09).
const PKRU = 1 << 9;
/// IA32_XSS HDC State (Bit 13).
const IA32_XSS_HDC = 1 << 13;
/// AMX TILECFG state (Bit 17)
const AMX_TILECFG = 1 << 17;
/// AMX TILEDATA state (Bit 17)
const AMX_TILEDATA = 1 << 18;
}
}
bitflags! {
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct ExtendedStateInfoXSSFlags: u32 {
/// IA32_XSS PT (Trace Packet) State (Bit 08).
const PT = 1 << 8;
/// IA32_XSS PASID state (Bit 10)
const PASID = 1 << 10;
/// IA32_XSS CET user state (Bit 11)
const CET_USER = 1 << 11;
/// IA32_XSS CET supervisor state (Bit 12)
const CET_SUPERVISOR = 1 << 12;
/// IA32_XSS HDC State (Bit 13).
const HDC = 1 << 13;
/// IA32_XSS UINTR state (Bit 14)
const UINTR = 1 << 14;
/// IA32_XSS LBR state (Bit 15)
const LBR = 1 << 15;
/// IA32_XSS HWP state (Bit 16)
const HWP = 1 << 16;
}
}
/// Information for saving/restoring extended register state (LEAF=0x0D).
///
/// # Platforms
/// ✅ AMD ✅ Intel
pub struct ExtendedStateInfo<R: CpuIdReader> {
read: R,
eax: ExtendedStateInfoXCR0Flags,
ebx: u32,
ecx: u32,
_edx: u32,
eax1: u32,
ebx1: u32,
ecx1: ExtendedStateInfoXSSFlags,
_edx1: u32,
}
impl<F: CpuIdReader> ExtendedStateInfo<F> {
check_flag!(
doc = "Support for legacy x87 in XCR0.",
xcr0_supports_legacy_x87,
eax,
ExtendedStateInfoXCR0Flags::LEGACY_X87
);
check_flag!(
doc = "Support for SSE 128-bit in XCR0.",
xcr0_supports_sse_128,
eax,
ExtendedStateInfoXCR0Flags::SSE128
);
check_flag!(
doc = "Support for AVX 256-bit in XCR0.",
xcr0_supports_avx_256,
eax,
ExtendedStateInfoXCR0Flags::AVX256
);
check_flag!(
doc = "Support for MPX BNDREGS in XCR0.",
xcr0_supports_mpx_bndregs,
eax,
ExtendedStateInfoXCR0Flags::MPX_BNDREGS
);
check_flag!(
doc = "Support for MPX BNDCSR in XCR0.",
xcr0_supports_mpx_bndcsr,
eax,
ExtendedStateInfoXCR0Flags::MPX_BNDCSR
);
check_flag!(
doc = "Support for AVX512 OPMASK in XCR0.",
xcr0_supports_avx512_opmask,
eax,
ExtendedStateInfoXCR0Flags::AVX512_OPMASK
);
check_flag!(
doc = "Support for AVX512 ZMM Hi256 XCR0.",
xcr0_supports_avx512_zmm_hi256,
eax,
ExtendedStateInfoXCR0Flags::AVX512_ZMM_HI256
);
check_flag!(
doc = "Support for AVX512 ZMM Hi16 in XCR0.",
xcr0_supports_avx512_zmm_hi16,
eax,
ExtendedStateInfoXCR0Flags::AVX512_ZMM_HI16
);
check_flag!(
doc = "Support for PKRU in XCR0.",
xcr0_supports_pkru,
eax,
ExtendedStateInfoXCR0Flags::PKRU
);
check_flag!(
doc = "Support for PT in IA32_XSS.",
ia32_xss_supports_pt,
ecx1,
ExtendedStateInfoXSSFlags::PT
);
check_flag!(
doc = "Support for HDC in IA32_XSS.",
ia32_xss_supports_hdc,
ecx1,
ExtendedStateInfoXSSFlags::HDC
);
/// Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
/// enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
/// are not enabled.
pub fn xsave_area_size_enabled_features(&self) -> u32 {
self.ebx
}
/// Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
/// XSAVE/XRSTOR save area required by all supported features in the processor,
/// i.e all the valid bit fields in XCR0.
pub fn xsave_area_size_supported_features(&self) -> u32 {
self.ecx
}
/// CPU has xsaveopt feature.
pub fn has_xsaveopt(&self) -> bool {
self.eax1 & 0x1 > 0
}
/// Supports XSAVEC and the compacted form of XRSTOR if set.
pub fn has_xsavec(&self) -> bool {
self.eax1 & 0b10 > 0
}
/// Supports XGETBV with ECX = 1 if set.
pub fn has_xgetbv(&self) -> bool {
self.eax1 & 0b100 > 0
}
/// Supports XSAVES/XRSTORS and IA32_XSS if set.
pub fn has_xsaves_xrstors(&self) -> bool {
self.eax1 & 0b1000 > 0
}
/// The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
pub fn xsave_size(&self) -> u32 {
self.ebx1
}
/// Iterator over extended state enumeration levels >= 2.
pub fn iter(&self) -> ExtendedStateIter<F> {
ExtendedStateIter {
read: self.read.clone(),
level: 1,
supported_xcr0: self.eax.bits(),
supported_xss: self.ecx1.bits(),
}
}
}
impl<R: CpuIdReader> Debug for ExtendedStateInfo<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ExtendedStateInfo")
.field("eax", &self.eax)
.field("ecx1", &self.ecx1)
.field(
"xsave_area_size_enabled_features",
&self.xsave_area_size_enabled_features(),
)
.field(
"xsave_area_size_supported_features",
&self.xsave_area_size_supported_features(),
)
.field("has_xsaveopt", &self.has_xsaveopt())
.field("has_xsavec", &self.has_xsavec())
.field("has_xgetbv", &self.has_xgetbv())
.field("has_xsaves_xrstors", &self.has_xsaves_xrstors())
.field("xsave_size", &self.xsave_size())
.field("extended_state_iter", &self.iter())
.finish()
}
}
/// Yields [ExtendedState] structs.
#[derive(Clone)]
pub struct ExtendedStateIter<R: CpuIdReader> {
read: R,
level: u32,
supported_xcr0: u32,
supported_xss: u32,
}
/// When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid
/// sub-leaf index), the processor returns information about the size and offset
/// of each processor extended state save area within the XSAVE/XRSTOR area.
///
/// The iterator goes over the valid sub-leaves and obtain size and offset
/// information for each processor extended state save area:
impl<R: CpuIdReader> Iterator for ExtendedStateIter<R> {
type Item = ExtendedState;
fn next(&mut self) -> Option<ExtendedState> {
self.level += 1;
if self.level > 31 {
return None;
}
let bit = 1 << self.level;
if (self.supported_xcr0 & bit > 0) || (self.supported_xss & bit > 0) {
let res = self.read.cpuid2(EAX_EXTENDED_STATE_INFO, self.level);
return Some(ExtendedState {
subleaf: self.level,
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
});
}
self.next()
}
}
impl<R: CpuIdReader> Debug for ExtendedStateIter<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
/// What kidn of extended register state this is.
#[derive(PartialEq, Eq, Debug)]
#[repr(u32)]
pub enum ExtendedRegisterType {
Avx,
MpxBndregs,
MpxBndcsr,
Avx512Opmask,
Avx512ZmmHi256,
Avx512ZmmHi16,
Pt,
Pkru,
Hdc,
Unknown(u32),
}
impl From<u32> for ExtendedRegisterType {
fn from(value: u32) -> ExtendedRegisterType {
match value {
0x2 => ExtendedRegisterType::Avx,
0x3 => ExtendedRegisterType::MpxBndregs,
0x4 => ExtendedRegisterType::MpxBndcsr,
0x5 => ExtendedRegisterType::Avx512Opmask,
0x6 => ExtendedRegisterType::Avx512ZmmHi256,
0x7 => ExtendedRegisterType::Avx512ZmmHi16,
0x8 => ExtendedRegisterType::Pt,
0x9 => ExtendedRegisterType::Pkru,
0xd => ExtendedRegisterType::Hdc,
x => ExtendedRegisterType::Unknown(x),
}
}
}
impl fmt::Display for ExtendedRegisterType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let data = match self {
ExtendedRegisterType::Avx => "AVX/YMM",
ExtendedRegisterType::MpxBndregs => "MPX BNDREGS",
ExtendedRegisterType::MpxBndcsr => "MPX BNDCSR",
ExtendedRegisterType::Avx512Opmask => "AVX-512 opmask",
ExtendedRegisterType::Avx512ZmmHi256 => "AVX-512 ZMM_Hi256",
ExtendedRegisterType::Avx512ZmmHi16 => "AVX-512 Hi16_ZMM",
ExtendedRegisterType::Pkru => "PKRU",
ExtendedRegisterType::Pt => "PT",
ExtendedRegisterType::Hdc => "HDC",
ExtendedRegisterType::Unknown(t) => {
return write!(f, "Unknown({})", t);
}
};
f.write_str(data)
}
}
/// Where the extended register state is stored.
#[derive(PartialEq, Eq, Debug)]
pub enum ExtendedRegisterStateLocation {
Xcr0,
Ia32Xss,
}
impl fmt::Display for ExtendedRegisterStateLocation {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let data = match self {
ExtendedRegisterStateLocation::Xcr0 => "XCR0 (user state)",
ExtendedRegisterStateLocation::Ia32Xss => "IA32_XSS (supervisor state)",
};
f.write_str(data)
}
}
/// ExtendedState subleaf structure for things that need to be restored.
pub struct ExtendedState {
pub subleaf: u32,
eax: u32,
ebx: u32,
ecx: u32,
}
impl ExtendedState {
/// Returns which register this specific extended subleaf contains information for.
pub fn register(&self) -> ExtendedRegisterType {
self.subleaf.into()
}
/// The size in bytes (from the offset specified in EBX) of the save area
/// for an extended state feature associated with a valid sub-leaf index, n.
/// This field reports 0 if the sub-leaf index, n, is invalid.
pub fn size(&self) -> u32 {
self.eax
}
/// The offset in bytes of this extended state components save area
/// from the beginning of the XSAVE/XRSTOR area.
pub fn offset(&self) -> u32 {
self.ebx
}
pub fn location(&self) -> ExtendedRegisterStateLocation {
if self.is_in_xcr0() {
ExtendedRegisterStateLocation::Xcr0
} else {
ExtendedRegisterStateLocation::Ia32Xss
}
}
/// True if the bit n (corresponding to the sub-leaf index)
/// is supported in the IA32_XSS MSR;
///
/// # Deprecation note
/// This will likely be removed in the future. Use `location()` instead.
pub fn is_in_ia32_xss(&self) -> bool {
self.ecx & 0b1 > 0
}
/// True if bit n is supported in XCR0.
///
/// # Deprecation note
/// This will likely be removed in the future. Use `location()` instead.
pub fn is_in_xcr0(&self) -> bool {
self.ecx & 0b1 == 0
}
/// Returns true when the compacted format of an XSAVE area is used,
/// this extended state component located on the next 64-byte
/// boundary following the preceding state component
/// (otherwise, it is located immediately following the preceding state component).
pub fn is_compacted_format(&self) -> bool {
self.ecx & 0b10 > 0
}
}
impl Debug for ExtendedState {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("ExtendedState")
.field("size", &self.size())
.field("offset", &self.offset())
.field("is_in_ia32_xss", &self.is_in_ia32_xss())
.field("is_in_xcr0", &self.is_in_xcr0())
.field("is_compacted_format", &self.is_compacted_format())
.finish()
}
}
/// Intel Resource Director Technology RDT (LEAF=0x0F).
///
/// Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0 and ECX = 1)
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct RdtMonitoringInfo<R: CpuIdReader> {
read: R,
ebx: u32,
edx: u32,
}
impl<R: CpuIdReader> RdtMonitoringInfo<R> {
/// Maximum range (zero-based) of RMID within this physical processor of all types.
pub fn rmid_range(&self) -> u32 {
self.ebx
}
check_bit_fn!(
doc = "Supports L3 Cache Intel RDT Monitoring.",
has_l3_monitoring,
edx,
1
);
/// L3 Cache Monitoring.
pub fn l3_monitoring(&self) -> Option<L3MonitoringInfo> {
if self.has_l3_monitoring() {
let res = self.read.cpuid2(EAX_RDT_MONITORING, 1);
Some(L3MonitoringInfo {
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
}
impl<R: CpuIdReader> Debug for RdtMonitoringInfo<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("RdtMonitoringInfo")
.field("rmid_range", &self.rmid_range())
.field("l3_monitoring", &self.l3_monitoring())
.finish()
}
}
/// Information about L3 cache monitoring.
pub struct L3MonitoringInfo {
ebx: u32,
ecx: u32,
edx: u32,
}
impl L3MonitoringInfo {
/// Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).
pub fn conversion_factor(&self) -> u32 {
self.ebx
}
/// Maximum range (zero-based) of RMID of L3.
pub fn maximum_rmid_range(&self) -> u32 {
self.ecx
}
check_bit_fn!(
doc = "Supports occupancy monitoring.",
has_occupancy_monitoring,
edx,
0
);
check_bit_fn!(
doc = "Supports total bandwidth monitoring.",
has_total_bandwidth_monitoring,
edx,
1
);
check_bit_fn!(
doc = "Supports local bandwidth monitoring.",
has_local_bandwidth_monitoring,
edx,
2
);
}
impl Debug for L3MonitoringInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("L3MonitoringInfo")
.field("conversion_factor", &self.conversion_factor())
.field("maximum_rmid_range", &self.maximum_rmid_range())
.finish()
}
}
/// Quality of service enforcement information (LEAF=0x10).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct RdtAllocationInfo<R: CpuIdReader> {
read: R,
ebx: u32,
}
impl<R: CpuIdReader> RdtAllocationInfo<R> {
check_bit_fn!(doc = "Supports L3 Cache Allocation.", has_l3_cat, ebx, 1);
check_bit_fn!(doc = "Supports L2 Cache Allocation.", has_l2_cat, ebx, 2);
check_bit_fn!(
doc = "Supports Memory Bandwidth Allocation.",
has_memory_bandwidth_allocation,
ebx,
3
);
/// L3 Cache Allocation Information.
pub fn l3_cat(&self) -> Option<L3CatInfo> {
if self.has_l3_cat() {
let res = self.read.cpuid2(EAX_RDT_ALLOCATION, 1);
Some(L3CatInfo {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
/// L2 Cache Allocation Information.
pub fn l2_cat(&self) -> Option<L2CatInfo> {
if self.has_l2_cat() {
let res = self.read.cpuid2(EAX_RDT_ALLOCATION, 2);
Some(L2CatInfo {
eax: res.eax,
ebx: res.ebx,
edx: res.edx,
})
} else {
None
}
}
/// Memory Bandwidth Allocation Information.
pub fn memory_bandwidth_allocation(&self) -> Option<MemBwAllocationInfo> {
if self.has_memory_bandwidth_allocation() {
let res = self.read.cpuid2(EAX_RDT_ALLOCATION, 3);
Some(MemBwAllocationInfo {
eax: res.eax,
ecx: res.ecx,
edx: res.edx,
})
} else {
None
}
}
}
impl<R: CpuIdReader> Debug for RdtAllocationInfo<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("RdtAllocationInfo")
.field("l3_cat", &self.l3_cat())
.field("l2_cat", &self.l2_cat())
.field(
"memory_bandwidth_allocation",
&self.memory_bandwidth_allocation(),
)
.finish()
}
}
/// L3 Cache Allocation Technology Enumeration Sub-leaf (LEAF=0x10, SUBLEAF=1).
pub struct L3CatInfo {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl L3CatInfo {
/// Length of the capacity bit mask.
pub fn capacity_mask_length(&self) -> u8 {
(get_bits(self.eax, 0, 4) + 1) as u8
}
/// Bit-granular map of isolation/contention of allocation units.
pub fn isolation_bitmap(&self) -> u32 {
self.ebx
}
/// Highest COS number supported for this Leaf.
pub fn highest_cos(&self) -> u16 {
get_bits(self.edx, 0, 15) as u16
}
check_bit_fn!(
doc = "Is Code and Data Prioritization Technology supported?",
has_code_data_prioritization,
ecx,
2
);
}
impl Debug for L3CatInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("L3CatInfo")
.field("capacity_mask_length", &self.capacity_mask_length())
.field("isolation_bitmap", &self.isolation_bitmap())
.field("highest_cos", &self.highest_cos())
.finish()
}
}
/// L2 Cache Allocation Technology Enumeration Sub-leaf (LEAF=0x10, SUBLEAF=2).
#[derive(Eq, PartialEq)]
pub struct L2CatInfo {
eax: u32,
ebx: u32,
edx: u32,
}
impl L2CatInfo {
/// Length of the capacity bit mask.
pub fn capacity_mask_length(&self) -> u8 {
(get_bits(self.eax, 0, 4) + 1) as u8
}
/// Bit-granular map of isolation/contention of allocation units.
pub fn isolation_bitmap(&self) -> u32 {
self.ebx
}
/// Highest COS number supported for this Leaf.
pub fn highest_cos(&self) -> u16 {
get_bits(self.edx, 0, 15) as u16
}
}
impl Debug for L2CatInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("L2CatInfo")
.field("capacity_mask_length", &self.capacity_mask_length())
.field("isolation_bitmap", &self.isolation_bitmap())
.field("highest_cos", &self.highest_cos())
.finish()
}
}
/// Memory Bandwidth Allocation Enumeration Sub-leaf (LEAF=0x10, SUBLEAF=3).
#[derive(Eq, PartialEq)]
pub struct MemBwAllocationInfo {
eax: u32,
ecx: u32,
edx: u32,
}
impl MemBwAllocationInfo {
/// Reports the maximum MBA throttling value supported for the corresponding ResID.
pub fn max_hba_throttling(&self) -> u16 {
(get_bits(self.eax, 0, 11) + 1) as u16
}
/// Highest COS number supported for this Leaf.
pub fn highest_cos(&self) -> u16 {
get_bits(self.edx, 0, 15) as u16
}
check_bit_fn!(
doc = "Reports whether the response of the delay values is linear.",
has_linear_response_delay,
ecx,
2
);
}
impl Debug for MemBwAllocationInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("MemBwAllocationInfo")
.field("max_hba_throttling", &self.max_hba_throttling())
.field("highest_cos", &self.highest_cos())
.field(
"has_linear_response_delay",
&self.has_linear_response_delay(),
)
.finish()
}
}
/// Intel SGX Capability Enumeration Leaf (LEAF=0x12).
///
/// Two sub-leafs: (EAX = 12H, ECX = 0 and ECX = 1)
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct SgxInfo<R: CpuIdReader> {
read: R,
eax: u32,
ebx: u32,
_ecx: u32,
edx: u32,
eax1: u32,
ebx1: u32,
ecx1: u32,
edx1: u32,
}
impl<F: CpuIdReader> SgxInfo<F> {
check_bit_fn!(doc = "Has SGX1 support.", has_sgx1, eax, 0);
check_bit_fn!(doc = "Has SGX2 support.", has_sgx2, eax, 1);
check_bit_fn!(
doc = "Supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and ESETCONTEXT.",
has_enclv_leaves_einvirtchild_edecvirtchild_esetcontext,
eax,
5
);
check_bit_fn!(
doc = "Supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.",
has_encls_leaves_etrackc_erdinfo_eldbc_elduc,
eax,
6
);
/// Bit vector of supported extended SGX features.
pub fn miscselect(&self) -> u32 {
self.ebx
}
/// The maximum supported enclave size in non-64-bit mode is 2^retval.
pub fn max_enclave_size_non_64bit(&self) -> u8 {
get_bits(self.edx, 0, 7) as u8
}
/// The maximum supported enclave size in 64-bit mode is 2^retval.
pub fn max_enclave_size_64bit(&self) -> u8 {
get_bits(self.edx, 8, 15) as u8
}
/// Reports the valid bits of SECS.ATTRIBUTES\[127:0\] that software can set with ECREATE.
pub fn secs_attributes(&self) -> (u64, u64) {
let lower = self.eax1 as u64 | (self.ebx1 as u64) << 32;
let upper = self.ecx1 as u64 | (self.edx1 as u64) << 32;
(lower, upper)
}
/// Iterator over SGX sub-leafs.
pub fn iter(&self) -> SgxSectionIter<F> {
SgxSectionIter {
read: self.read.clone(),
current: 2,
}
}
}
impl<R: CpuIdReader> Debug for SgxInfo<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("SgxInfo")
.field("has_sgx1", &self.has_sgx1())
.field("has_sgx2", &self.has_sgx2())
.field("miscselect", &self.miscselect())
.field(
"max_enclave_size_non_64bit",
&self.max_enclave_size_non_64bit(),
)
.field("max_enclave_size_64bit", &self.max_enclave_size_64bit())
.field(
"has_encls_leaves_etrackc_erdinfo_eldbc_elduc",
&self.has_encls_leaves_etrackc_erdinfo_eldbc_elduc(),
)
.field(
"has_enclv_leaves_einvirtchild_edecvirtchild_esetcontext",
&self.has_enclv_leaves_einvirtchild_edecvirtchild_esetcontext(),
)
.field("sgx_section_iter", &self.iter())
.finish()
}
}
/// Iterator over the SGX sub-leafs (ECX >= 2).
#[derive(Clone)]
pub struct SgxSectionIter<R: CpuIdReader> {
read: R,
current: u32,
}
impl<R: CpuIdReader> Iterator for SgxSectionIter<R> {
type Item = SgxSectionInfo;
fn next(&mut self) -> Option<SgxSectionInfo> {
let res = self.read.cpuid2(EAX_SGX, self.current);
self.current += 1;
match get_bits(res.eax, 0, 3) {
0b0001 => Some(SgxSectionInfo::Epc(EpcSection {
eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
})),
_ => None,
}
}
}
impl<R: CpuIdReader> Debug for SgxSectionIter<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
/// Intel SGX EPC Enumeration Leaf
///
/// Sub-leaves 2 or higher.
#[derive(Debug)]
pub enum SgxSectionInfo {
// This would be nice: https://github.com/rust-lang/rfcs/pull/1450
Epc(EpcSection),
}
/// EBX:EAX and EDX:ECX provide information on the Enclave Page Cache (EPC) section
#[derive(Debug)]
pub struct EpcSection {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl EpcSection {
/// The physical address of the base of the EPC section
pub fn physical_base(&self) -> u64 {
let lower = (get_bits(self.eax, 12, 31) << 12) as u64;
let upper = (get_bits(self.ebx, 0, 19) as u64) << 32;
lower | upper
}
/// Size of the corresponding EPC section within the Processor Reserved Memory.
pub fn size(&self) -> u64 {
let lower = (get_bits(self.ecx, 12, 31) << 12) as u64;
let upper = (get_bits(self.edx, 0, 19) as u64) << 32;
lower | upper
}
}
/// Intel Processor Trace Information (LEAF=0x14).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct ProcessorTraceInfo {
_eax: u32,
ebx: u32,
ecx: u32,
_edx: u32,
leaf1: Option<CpuIdResult>,
}
impl ProcessorTraceInfo {
// EBX features
check_bit_fn!(
doc = "If true, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and \
that IA32_RTIT_CR3_MATCH MSR can be accessed.",
has_rtit_cr3_match,
ebx,
0
);
check_bit_fn!(
doc = "If true, Indicates support of Configurable PSB and Cycle-Accurate Mode.",
has_configurable_psb_and_cycle_accurate_mode,
ebx,
1
);
check_bit_fn!(
doc = "If true, Indicates support of IP Filtering, TraceStop filtering, and \
preservation of Intel PT MSRs across warm reset.",
has_ip_tracestop_filtering,
ebx,
2
);
check_bit_fn!(
doc = "If true, Indicates support of MTC timing packet and suppression of \
COFI-based packets.",
has_mtc_timing_packet_coefi_suppression,
ebx,
3
);
check_bit_fn!(
doc = "Indicates support of PTWRITE. Writes can set IA32_RTIT_CTL\\[12\\] (PTWEn \
and IA32_RTIT_CTL\\[5\\] (FUPonPTW), and PTWRITE can generate packets",
has_ptwrite,
ebx,
4
);
check_bit_fn!(
doc = "Support of Power Event Trace. Writes can set IA32_RTIT_CTL\\[4\\] (PwrEvtEn) \
enabling Power Event Trace packet generation.",
has_power_event_trace,
ebx,
5
);
// ECX features
check_bit_fn!(
doc = "If true, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence \
utilizing the ToPA output scheme; IA32_RTIT_OUTPUT_BASE and \
IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.",
has_topa,
ecx,
0
);
check_bit_fn!(
doc = "If true, ToPA tables can hold any number of output entries, up to the \
maximum allowed by the MaskOrTableOffset field of \
IA32_RTIT_OUTPUT_MASK_PTRS.",
has_topa_maximum_entries,
ecx,
1
);
check_bit_fn!(
doc = "If true, Indicates support of Single-Range Output scheme.",
has_single_range_output_scheme,
ecx,
2
);
check_bit_fn!(
doc = "If true, Indicates support of output to Trace Transport subsystem.",
has_trace_transport_subsystem,
ecx,
3
);
check_bit_fn!(
doc = "If true, Generated packets which contain IP payloads have LIP values, \
which include the CS base component.",
has_lip_with_cs_base,
ecx,
31
);
/// Number of configurable Address Ranges for filtering (Bits 2:0).
pub fn configurable_address_ranges(&self) -> u8 {
self.leaf1.map_or(0, |res| get_bits(res.eax, 0, 2) as u8)
}
/// Bitmap of supported MTC period encodings (Bit 31:16).
pub fn supported_mtc_period_encodings(&self) -> u16 {
self.leaf1.map_or(0, |res| get_bits(res.eax, 16, 31) as u16)
}
/// Bitmap of supported Cycle Threshold value encodings (Bits 15-0).
pub fn supported_cycle_threshold_value_encodings(&self) -> u16 {
self.leaf1.map_or(0, |res| get_bits(res.ebx, 0, 15) as u16)
}
/// Bitmap of supported Configurable PSB frequency encodings (Bit 31:16)
pub fn supported_psb_frequency_encodings(&self) -> u16 {
self.leaf1.map_or(0, |res| get_bits(res.ebx, 16, 31) as u16)
}
}
impl Debug for ProcessorTraceInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("ProcessorTraceInfo")
.field(
"configurable_address_ranges",
&self.configurable_address_ranges(),
)
.field(
"supported_mtc_period_encodings",
&self.supported_mtc_period_encodings(),
)
.field(
"supported_cycle_threshold_value_encodings",
&self.supported_cycle_threshold_value_encodings(),
)
.field(
"supported_psb_frequency_encodings",
&self.supported_psb_frequency_encodings(),
)
.finish()
}
}
/// Time Stamp Counter/Core Crystal Clock Information (LEAF=0x15).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct TscInfo {
eax: u32,
ebx: u32,
ecx: u32,
}
impl fmt::Debug for TscInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("TscInfo")
.field("denominator", &self.denominator())
.field("numerator", &self.numerator())
.field("nominal_frequency", &self.nominal_frequency())
.field("tsc_frequency", &self.tsc_frequency())
.finish()
}
}
impl TscInfo {
/// An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.
pub fn denominator(&self) -> u32 {
self.eax
}
/// An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.
///
/// If this is 0, the TSC/”core crystal clock” ratio is not enumerated.
pub fn numerator(&self) -> u32 {
self.ebx
}
/// An unsigned integer which is the nominal frequency of the core crystal clock in Hz.
///
/// If this is 0, the nominal core crystal clock frequency is not enumerated.
pub fn nominal_frequency(&self) -> u32 {
self.ecx
}
/// “TSC frequency” = “core crystal clock frequency” * EBX/EAX.
pub fn tsc_frequency(&self) -> Option<u64> {
// In some case TscInfo is a valid leaf, but the values reported are still 0
// we should avoid a division by zero in case denominator ends up being 0.
if self.nominal_frequency() == 0 || self.numerator() == 0 || self.denominator() == 0 {
return None;
}
Some(self.nominal_frequency() as u64 * self.numerator() as u64 / self.denominator() as u64)
}
}
/// Processor Frequency Information (LEAF=0x16).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct ProcessorFrequencyInfo {
eax: u32,
ebx: u32,
ecx: u32,
}
impl ProcessorFrequencyInfo {
/// Processor Base Frequency (in MHz).
pub fn processor_base_frequency(&self) -> u16 {
get_bits(self.eax, 0, 15) as u16
}
/// Maximum Frequency (in MHz).
pub fn processor_max_frequency(&self) -> u16 {
get_bits(self.ebx, 0, 15) as u16
}
/// Bus (Reference) Frequency (in MHz).
pub fn bus_frequency(&self) -> u16 {
get_bits(self.ecx, 0, 15) as u16
}
}
impl fmt::Debug for ProcessorFrequencyInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ProcessorFrequencyInfo")
.field("processor_base_frequency", &self.processor_base_frequency())
.field("processor_max_frequency", &self.processor_max_frequency())
.field("bus_frequency", &self.bus_frequency())
.finish()
}
}
/// Deterministic Address Translation Structure Iterator (LEAF=0x18).
///
/// # Platforms
/// ❌ AMD ✅ Intel
#[derive(Clone)]
pub struct DatIter<R: CpuIdReader> {
read: R,
current: u32,
count: u32,
}
impl<R: CpuIdReader> Iterator for DatIter<R> {
type Item = DatInfo;
/// Iterate over each sub-leaf with an address translation structure.
fn next(&mut self) -> Option<DatInfo> {
loop {
// Sub-leaf index n is invalid if n exceeds the value that sub-leaf 0 returns in EAX
if self.current > self.count {
return None;
}
let res = self
.read
.cpuid2(EAX_DETERMINISTIC_ADDRESS_TRANSLATION_INFO, self.current);
self.current += 1;
// A sub-leaf index is also invalid if EDX[4:0] returns 0.
if get_bits(res.edx, 0, 4) == 0 {
// Valid sub-leaves do not need to be contiguous or in any particular order.
// A valid sub-leaf may be in a higher input ECX value than an invalid sub-leaf
// or than a valid sub-leaf of a higher or lower-level struc-ture
continue;
}
return Some(DatInfo {
_eax: res.eax,
ebx: res.ebx,
ecx: res.ecx,
edx: res.edx,
});
}
}
}
impl<R: CpuIdReader> Debug for DatIter<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let mut debug = f.debug_list();
self.clone().for_each(|ref item| {
debug.entry(item);
});
debug.finish()
}
}
/// Deterministic Address Translation Structure
pub struct DatInfo {
_eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl DatInfo {
check_bit_fn!(
doc = "4K page size entries supported by this structure",
has_4k_entries,
ebx,
0
);
check_bit_fn!(
doc = "2MB page size entries supported by this structure",
has_2mb_entries,
ebx,
1
);
check_bit_fn!(
doc = "4MB page size entries supported by this structure",
has_4mb_entries,
ebx,
2
);
check_bit_fn!(
doc = "1GB page size entries supported by this structure",
has_1gb_entries,
ebx,
3
);
check_bit_fn!(
doc = "Fully associative structure",
is_fully_associative,
edx,
8
);
/// Partitioning (0: Soft partitioning between the logical processors sharing this structure).
pub fn partitioning(&self) -> u8 {
get_bits(self.ebx, 8, 10) as u8
}
/// Ways of associativity.
pub fn ways(&self) -> u16 {
get_bits(self.ebx, 16, 31) as u16
}
/// Number of Sets.
pub fn sets(&self) -> u32 {
self.ecx
}
/// Translation cache type field.
pub fn cache_type(&self) -> DatType {
match get_bits(self.edx, 0, 4) as u8 {
0b00001 => DatType::DataTLB,
0b00010 => DatType::InstructionTLB,
0b00011 => DatType::UnifiedTLB,
0b00000 => DatType::Null, // should never be returned as this indicates invalid struct!
0b00100 => DatType::LoadOnly,
0b00101 => DatType::StoreOnly,
_ => DatType::Unknown,
}
}
/// Translation cache level (starts at 1)
pub fn cache_level(&self) -> u8 {
get_bits(self.edx, 5, 7) as u8
}
/// Maximum number of addressable IDs for logical processors sharing this translation cache
pub fn max_addressable_ids(&self) -> u16 {
// Add one to the return value to get the result:
(get_bits(self.edx, 14, 25) + 1) as u16
}
}
impl Debug for DatInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("DatInfo")
.field("has_4k_entries", &self.has_4k_entries())
.field("has_2mb_entries", &self.has_2mb_entries())
.field("has_4mb_entries", &self.has_4mb_entries())
.field("has_1gb_entries", &self.has_1gb_entries())
.field("is_fully_associative", &self.is_fully_associative())
.finish()
}
}
/// Deterministic Address Translation cache type (EDX bits 04 -- 00)
#[derive(Eq, PartialEq, Debug)]
pub enum DatType {
/// Null (indicates this sub-leaf is not valid).
Null = 0b00000,
DataTLB = 0b00001,
InstructionTLB = 0b00010,
/// Some unified TLBs will allow a single TLB entry to satisfy data read/write
/// and instruction fetches. Others will require separate entries (e.g., one
/// loaded on data read/write and another loaded on an instruction fetch) .
/// Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual
/// for details of a particular product.
UnifiedTLB = 0b00011,
LoadOnly = 0b0100,
StoreOnly = 0b0101,
Unknown,
}
impl fmt::Display for DatType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let t = match self {
DatType::Null => "invalid (0)",
DatType::DataTLB => "Data TLB",
DatType::InstructionTLB => "Instruction TLB",
DatType::UnifiedTLB => "Unified TLB",
DatType::LoadOnly => "Load Only",
DatType::StoreOnly => "Store Only",
DatType::Unknown => "Unknown",
};
f.write_str(t)
}
}
/// SoC vendor specific information (LEAF=0x17).
///
/// # Platforms
/// ❌ AMD ✅ Intel
pub struct SoCVendorInfo<R: CpuIdReader> {
read: R,
/// MaxSOCID_Index
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
}
impl<R: CpuIdReader> SoCVendorInfo<R> {
pub fn get_soc_vendor_id(&self) -> u16 {
get_bits(self.ebx, 0, 15) as u16
}
pub fn get_project_id(&self) -> u32 {
self.ecx
}
pub fn get_stepping_id(&self) -> u32 {
self.edx
}
pub fn get_vendor_brand(&self) -> Option<SoCVendorBrand> {
// Leaf 17H is valid if MaxSOCID_Index >= 3.
if self.eax >= 3 {
let r1 = self.read.cpuid2(EAX_SOC_VENDOR_INFO, 1);
let r2 = self.read.cpuid2(EAX_SOC_VENDOR_INFO, 2);
let r3 = self.read.cpuid2(EAX_SOC_VENDOR_INFO, 3);
Some(SoCVendorBrand { data: [r1, r2, r3] })
} else {
None
}
}
pub fn get_vendor_attributes(&self) -> Option<SoCVendorAttributesIter<R>> {
if self.eax > 3 {
Some(SoCVendorAttributesIter {
read: self.read.clone(),
count: self.eax,
current: 3,
})
} else {
None
}
}
}
impl<R: CpuIdReader> fmt::Debug for SoCVendorInfo<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SoCVendorInfo")
.field("soc_vendor_id", &self.get_soc_vendor_id())
.field("project_id", &self.get_project_id())
.field("stepping_id", &self.get_stepping_id())
.field("vendor_brand", &self.get_vendor_brand())
.field("vendor_attributes", &self.get_vendor_attributes())
.finish()
}
}
/// Iterator for SoC vendor attributes.
pub struct SoCVendorAttributesIter<R: CpuIdReader> {
read: R,
count: u32,
current: u32,
}
impl<R: CpuIdReader> fmt::Debug for SoCVendorAttributesIter<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SocVendorAttributesIter")
.field("count", &self.count)
.field("current", &self.current)
.finish()
}
}
impl<R: CpuIdReader> Iterator for SoCVendorAttributesIter<R> {
type Item = CpuIdResult;
/// Iterate over all SoC vendor specific attributes.
fn next(&mut self) -> Option<CpuIdResult> {
if self.current > self.count {
return None;
}
self.count += 1;
Some(self.read.cpuid2(EAX_SOC_VENDOR_INFO, self.count))
}
}
/// A vendor brand string as queried from the cpuid leaf.
#[derive(Debug, PartialEq, Eq)]
#[repr(C)]
pub struct SoCVendorBrand {
data: [CpuIdResult; 3],
}
impl SoCVendorBrand {
/// Return the SocVendorBrand as a string.
pub fn as_str(&self) -> &str {
let brand_string_start = self as *const SoCVendorBrand as *const u8;
let slice = unsafe {
// Safety: SoCVendorBrand is laid out with repr(C).
slice::from_raw_parts(brand_string_start, size_of::<SoCVendorBrand>())
};
str::from_utf8(slice).unwrap_or("InvalidSoCVendorString")
}
#[deprecated(
since = "10.0.0",
note = "Use idiomatic function name `as_str` instead"
)]
pub fn as_string(&self) -> &str {
self.as_str()
}
}
impl fmt::Display for SoCVendorBrand {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.as_str())
}
}
/// Information about Hypervisor (LEAF=0x4000_0001)
///
/// More information about this semi-official leaf can be found here
/// <https://lwn.net/Articles/301888/>
pub struct HypervisorInfo<R: CpuIdReader> {
read: R,
res: CpuIdResult,
}
impl<R: CpuIdReader> fmt::Debug for HypervisorInfo<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("HypervisorInfo")
.field("identify", &self.identify())
.field("tsc_frequency", &self.tsc_frequency())
.field("apic_frequency", &self.apic_frequency())
.finish()
}
}
/// Identifies the different Hypervisor products.
#[derive(Debug, Eq, PartialEq)]
pub enum Hypervisor {
Xen,
VMware,
HyperV,
KVM,
/// QEMU is the hypervisor identity when QEMU is used
/// without an accelerator, such as KVM.
QEMU,
Bhyve,
QNX,
ACRN,
Unknown(u32, u32, u32),
}
impl<R: CpuIdReader> HypervisorInfo<R> {
/// Returns the identity of the [`Hypervisor`].
///
/// ## Technical Background
///
/// The value is a 12-byte (12 character) fixed-length ASCII string.
///
/// Usually all of these IDs can be found in the original source code on
/// Github relatively easy (if the project is open source). Once you
/// have an ID, you find cumulated lists with all kinds of IDs on Github
/// relatively easy.
pub fn identify(&self) -> Hypervisor {
match (self.res.ebx, self.res.ecx, self.res.edx) {
// "VMwareVMware" (0x56 => V, 0x4d => M, ...)
(0x61774d56, 0x4d566572, 0x65726177) => Hypervisor::VMware,
// "XenVMMXenVMM"
(0x566e6558, 0x65584d4d, 0x4d4d566e) => Hypervisor::Xen,
// "Microsoft Hv"
(0x7263694d, 0x666f736f, 0x76482074) => Hypervisor::HyperV,
// "KVMKVMKVM\0\0\0"
(0x4b4d564b, 0x564b4d56, 0x0000004d) => Hypervisor::KVM,
// "TCGTCGTCGTCG"
// see https://github.com/qemu/qemu/blob/6512fa497c2fa9751b9d774ab32d87a9764d1958/target/i386/cpu.c
(0x54474354, 0x43544743, 0x47435447) => Hypervisor::QEMU,
// "bhyve bhyve "
// found this in another library ("heim-virt")
(0x76796862, 0x68622065, 0x20657679) => Hypervisor::Bhyve,
// "BHyVE BHyVE "
// But this value is in the original source code. To be safe, we keep both.
// See https://github.com/lattera/bhyve/blob/5946a9115d2771a1d27f14a835c7fbc05b30f7f9/sys/amd64/vmm/x86.c#L165
(0x56794842, 0x48422045, 0x20455679) => Hypervisor::Bhyve,
// "QNXQVMBSQG"
// This can be verified in multiple Git repos (e.g. by Intel)
// https://github.com/search?q=QNXQVMBSQG&type=code
(0x51584e51, 0x53424d56, 0x00004751) => Hypervisor::QNX,
// "ACRNACRNACRN"
(0x4e524341, 0x4e524341, 0x4e524341) => Hypervisor::ACRN,
(ebx, ecx, edx) => Hypervisor::Unknown(ebx, ecx, edx),
}
}
/// TSC frequency in kHz.
pub fn tsc_frequency(&self) -> Option<u32> {
// vm aware tsc frequency retrieval:
// # EAX: (Virtual) TSC frequency in kHz.
if self.res.eax >= 0x40000010 {
let virt_tinfo = self.read.cpuid2(0x40000010, 0);
Some(virt_tinfo.eax)
} else {
None
}
}
/// (Virtual) Bus (local apic timer) frequency in kHz.
pub fn apic_frequency(&self) -> Option<u32> {
// # EBX: (Virtual) Bus (local apic timer) frequency in kHz.
if self.res.eax >= 0x40000010 {
let virt_tinfo = self.read.cpuid2(0x40000010, 0);
Some(virt_tinfo.ebx)
} else {
None
}
}
}
#[cfg(doctest)]
mod test_readme {
macro_rules! external_doc_test {
($x:expr) => {
#[doc = $x]
extern "C" {}
};
}
external_doc_test!(include_str!("../README.md"));
}