1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
use fallible_iterator::FallibleIterator;
use fallible_streaming_iterator::FallibleStreamingIterator;
use std::convert;
use super::{Error, Result, Statement};
use crate::types::{FromSql, FromSqlError, ValueRef};
/// A handle for the resulting rows of a query.
#[must_use = "Rows is lazy and will do nothing unless consumed"]
pub struct Rows<'stmt> {
pub(crate) stmt: Option<&'stmt Statement<'stmt>>,
row: Option<Row<'stmt>>,
}
impl<'stmt> Rows<'stmt> {
#[inline]
fn reset(&mut self) -> Result<()> {
if let Some(stmt) = self.stmt.take() {
stmt.reset()
} else {
Ok(())
}
}
/// Attempt to get the next row from the query. Returns `Ok(Some(Row))` if
/// there is another row, `Err(...)` if there was an error
/// getting the next row, and `Ok(None)` if all rows have been retrieved.
///
/// ## Note
///
/// This interface is not compatible with Rust's `Iterator` trait, because
/// the lifetime of the returned row is tied to the lifetime of `self`.
/// This is a fallible "streaming iterator". For a more natural interface,
/// consider using [`query_map`](Statement::query_map) or
/// [`query_and_then`](Statement::query_and_then) instead, which
/// return types that implement `Iterator`.
#[allow(clippy::should_implement_trait)] // cannot implement Iterator
#[inline]
pub fn next(&mut self) -> Result<Option<&Row<'stmt>>> {
self.advance()?;
Ok((*self).get())
}
/// Map over this `Rows`, converting it to a [`Map`], which
/// implements `FallibleIterator`.
/// ```rust,no_run
/// use fallible_iterator::FallibleIterator;
/// # use rusqlite::{Result, Statement};
/// fn query(stmt: &mut Statement) -> Result<Vec<i64>> {
/// let rows = stmt.query([])?;
/// rows.map(|r| r.get(0)).collect()
/// }
/// ```
// FIXME Hide FallibleStreamingIterator::map
#[inline]
pub fn map<F, B>(self, f: F) -> Map<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
Map { rows: self, f }
}
/// Map over this `Rows`, converting it to a [`MappedRows`], which
/// implements `Iterator`.
#[inline]
pub fn mapped<F, B>(self, f: F) -> MappedRows<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
MappedRows { rows: self, map: f }
}
/// Map over this `Rows` with a fallible function, converting it to a
/// [`AndThenRows`], which implements `Iterator` (instead of
/// `FallibleStreamingIterator`).
#[inline]
pub fn and_then<F, T, E>(self, f: F) -> AndThenRows<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<T, E>,
{
AndThenRows { rows: self, map: f }
}
/// Give access to the underlying statement
#[must_use]
pub fn as_ref(&self) -> Option<&Statement<'stmt>> {
self.stmt
}
}
impl<'stmt> Rows<'stmt> {
#[inline]
pub(crate) fn new(stmt: &'stmt Statement<'stmt>) -> Rows<'stmt> {
Rows {
stmt: Some(stmt),
row: None,
}
}
#[inline]
pub(crate) fn get_expected_row(&mut self) -> Result<&Row<'stmt>> {
match self.next()? {
Some(row) => Ok(row),
None => Err(Error::QueryReturnedNoRows),
}
}
}
impl Drop for Rows<'_> {
#[allow(unused_must_use)]
#[inline]
fn drop(&mut self) {
self.reset();
}
}
/// `F` is used to transform the _streaming_ iterator into a _fallible_
/// iterator.
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Map<'stmt, F> {
rows: Rows<'stmt>,
f: F,
}
impl<F, B> FallibleIterator for Map<'_, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
type Error = Error;
type Item = B;
#[inline]
fn next(&mut self) -> Result<Option<B>> {
match self.rows.next()? {
Some(v) => Ok(Some((self.f)(v)?)),
None => Ok(None),
}
}
}
/// An iterator over the mapped resulting rows of a query.
///
/// `F` is used to transform the _streaming_ iterator into a _standard_
/// iterator.
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct MappedRows<'stmt, F> {
rows: Rows<'stmt>,
map: F,
}
impl<T, F> Iterator for MappedRows<'_, F>
where
F: FnMut(&Row<'_>) -> Result<T>,
{
type Item = Result<T>;
#[inline]
fn next(&mut self) -> Option<Result<T>> {
let map = &mut self.map;
self.rows
.next()
.transpose()
.map(|row_result| row_result.and_then(map))
}
}
/// An iterator over the mapped resulting rows of a query, with an Error type
/// unifying with Error.
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct AndThenRows<'stmt, F> {
rows: Rows<'stmt>,
map: F,
}
impl<T, E, F> Iterator for AndThenRows<'_, F>
where
E: From<Error>,
F: FnMut(&Row<'_>) -> Result<T, E>,
{
type Item = Result<T, E>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let map = &mut self.map;
self.rows
.next()
.transpose()
.map(|row_result| row_result.map_err(E::from).and_then(map))
}
}
/// `FallibleStreamingIterator` differs from the standard library's `Iterator`
/// in two ways:
/// * each call to `next` (`sqlite3_step`) can fail.
/// * returned `Row` is valid until `next` is called again or `Statement` is
/// reset or finalized.
///
/// While these iterators cannot be used with Rust `for` loops, `while let`
/// loops offer a similar level of ergonomics:
/// ```rust,no_run
/// # use rusqlite::{Result, Statement};
/// fn query(stmt: &mut Statement) -> Result<()> {
/// let mut rows = stmt.query([])?;
/// while let Some(row) = rows.next()? {
/// // scan columns value
/// }
/// Ok(())
/// }
/// ```
impl<'stmt> FallibleStreamingIterator for Rows<'stmt> {
type Error = Error;
type Item = Row<'stmt>;
#[inline]
fn advance(&mut self) -> Result<()> {
if let Some(stmt) = self.stmt {
match stmt.step() {
Ok(true) => {
self.row = Some(Row { stmt });
Ok(())
}
Ok(false) => {
let r = self.reset();
self.row = None;
r
}
Err(e) => {
let _ = self.reset(); // prevents infinite loop on error
self.row = None;
Err(e)
}
}
} else {
self.row = None;
Ok(())
}
}
#[inline]
fn get(&self) -> Option<&Row<'stmt>> {
self.row.as_ref()
}
}
/// A single result row of a query.
pub struct Row<'stmt> {
pub(crate) stmt: &'stmt Statement<'stmt>,
}
impl<'stmt> Row<'stmt> {
/// Get the value of a particular column of the result row.
///
/// # Panics
///
/// Panics if calling [`row.get(idx)`](Row::get) would return an error,
/// including:
///
/// * If the underlying SQLite column type is not a valid type as a source
/// for `T`
/// * If the underlying SQLite integral value is outside the range
/// representable by `T`
/// * If `idx` is outside the range of columns in the returned query
#[track_caller]
pub fn get_unwrap<I: RowIndex, T: FromSql>(&self, idx: I) -> T {
self.get(idx).unwrap()
}
/// Get the value of a particular column of the result row.
///
/// ## Failure
///
/// Returns an `Error::InvalidColumnType` if the underlying SQLite column
/// type is not a valid type as a source for `T`.
///
/// Returns an `Error::InvalidColumnIndex` if `idx` is outside the valid
/// column range for this row.
///
/// Returns an `Error::InvalidColumnName` if `idx` is not a valid column
/// name for this row.
///
/// If the result type is i128 (which requires the `i128_blob` feature to be
/// enabled), and the underlying SQLite column is a blob whose size is not
/// 16 bytes, `Error::InvalidColumnType` will also be returned.
#[track_caller]
pub fn get<I: RowIndex, T: FromSql>(&self, idx: I) -> Result<T> {
let idx = idx.idx(self.stmt)?;
let value = self.stmt.value_ref(idx);
FromSql::column_result(value).map_err(|err| match err {
FromSqlError::InvalidType => Error::InvalidColumnType(
idx,
self.stmt.column_name_unwrap(idx).into(),
value.data_type(),
),
FromSqlError::OutOfRange(i) => Error::IntegralValueOutOfRange(idx, i),
FromSqlError::Other(err) => {
Error::FromSqlConversionFailure(idx, value.data_type(), err)
}
FromSqlError::InvalidBlobSize { .. } => {
Error::FromSqlConversionFailure(idx, value.data_type(), Box::new(err))
}
})
}
/// Get the value of a particular column of the result row as a `ValueRef`,
/// allowing data to be read out of a row without copying.
///
/// This `ValueRef` is valid only as long as this Row, which is enforced by
/// its lifetime. This means that while this method is completely safe,
/// it can be somewhat difficult to use, and most callers will be better
/// served by [`get`](Row::get) or [`get_unwrap`](Row::get_unwrap).
///
/// ## Failure
///
/// Returns an `Error::InvalidColumnIndex` if `idx` is outside the valid
/// column range for this row.
///
/// Returns an `Error::InvalidColumnName` if `idx` is not a valid column
/// name for this row.
pub fn get_ref<I: RowIndex>(&self, idx: I) -> Result<ValueRef<'_>> {
let idx = idx.idx(self.stmt)?;
// Narrowing from `ValueRef<'stmt>` (which `self.stmt.value_ref(idx)`
// returns) to `ValueRef<'a>` is needed because it's only valid until
// the next call to sqlite3_step.
let val_ref = self.stmt.value_ref(idx);
Ok(val_ref)
}
/// Get the value of a particular column of the result row as a `ValueRef`,
/// allowing data to be read out of a row without copying.
///
/// This `ValueRef` is valid only as long as this Row, which is enforced by
/// its lifetime. This means that while this method is completely safe,
/// it can be difficult to use, and most callers will be better served by
/// [`get`](Row::get) or [`get_unwrap`](Row::get_unwrap).
///
/// # Panics
///
/// Panics if calling [`row.get_ref(idx)`](Row::get_ref) would return an
/// error, including:
///
/// * If `idx` is outside the range of columns in the returned query.
/// * If `idx` is not a valid column name for this row.
#[track_caller]
pub fn get_ref_unwrap<I: RowIndex>(&self, idx: I) -> ValueRef<'_> {
self.get_ref(idx).unwrap()
}
}
impl<'stmt> AsRef<Statement<'stmt>> for Row<'stmt> {
fn as_ref(&self) -> &Statement<'stmt> {
self.stmt
}
}
/// Debug `Row` like an ordered `Map<Result<&str>, Result<(Type, ValueRef)>>`
/// with column name as key except that for `Type::Blob` only its size is
/// printed (not its content).
impl<'stmt> std::fmt::Debug for Row<'stmt> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut dm = f.debug_map();
for c in 0..self.stmt.column_count() {
let name = self.stmt.column_name(c).expect("valid column index");
dm.key(&name);
let value = self.get_ref(c);
match value {
Ok(value) => {
let dt = value.data_type();
match value {
ValueRef::Null => {
dm.value(&(dt, ()));
}
ValueRef::Integer(i) => {
dm.value(&(dt, i));
}
ValueRef::Real(f) => {
dm.value(&(dt, f));
}
ValueRef::Text(s) => {
dm.value(&(dt, String::from_utf8_lossy(s)));
}
ValueRef::Blob(b) => {
dm.value(&(dt, b.len()));
}
}
}
Err(ref _err) => {
dm.value(&value);
}
}
}
dm.finish()
}
}
mod sealed {
/// This trait exists just to ensure that the only impls of `trait Params`
/// that are allowed are ones in this crate.
pub trait Sealed {}
impl Sealed for usize {}
impl Sealed for &str {}
}
/// A trait implemented by types that can index into columns of a row.
///
/// It is only implemented for `usize` and `&str`.
pub trait RowIndex: sealed::Sealed {
/// Returns the index of the appropriate column, or `None` if no such
/// column exists.
fn idx(&self, stmt: &Statement<'_>) -> Result<usize>;
}
impl RowIndex for usize {
#[inline]
fn idx(&self, stmt: &Statement<'_>) -> Result<usize> {
if *self >= stmt.column_count() {
Err(Error::InvalidColumnIndex(*self))
} else {
Ok(*self)
}
}
}
impl RowIndex for &'_ str {
#[inline]
fn idx(&self, stmt: &Statement<'_>) -> Result<usize> {
stmt.column_index(self)
}
}
macro_rules! tuple_try_from_row {
($($field:ident),*) => {
impl<'a, $($field,)*> convert::TryFrom<&'a Row<'a>> for ($($field,)*) where $($field: FromSql,)* {
type Error = crate::Error;
// we end with index += 1, which rustc warns about
// unused_variables and unused_mut are allowed for ()
#[allow(unused_assignments, unused_variables, unused_mut)]
fn try_from(row: &'a Row<'a>) -> Result<Self> {
let mut index = 0;
$(
#[allow(non_snake_case)]
let $field = row.get::<_, $field>(index)?;
index += 1;
)*
Ok(($($field,)*))
}
}
}
}
macro_rules! tuples_try_from_row {
() => {
// not very useful, but maybe some other macro users will find this helpful
tuple_try_from_row!();
};
($first:ident $(, $remaining:ident)*) => {
tuple_try_from_row!($first $(, $remaining)*);
tuples_try_from_row!($($remaining),*);
};
}
tuples_try_from_row!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);
#[cfg(test)]
mod tests {
use crate::{Connection, Result};
#[test]
fn test_try_from_row_for_tuple_1() -> Result<()> {
use crate::ToSql;
use std::convert::TryFrom;
let conn = Connection::open_in_memory()?;
conn.execute(
"CREATE TABLE test (a INTEGER)",
crate::params_from_iter(std::iter::empty::<&dyn ToSql>()),
)?;
conn.execute("INSERT INTO test VALUES (42)", [])?;
let val = conn.query_row("SELECT a FROM test", [], |row| <(u32,)>::try_from(row))?;
assert_eq!(val, (42,));
let fail = conn.query_row("SELECT a FROM test", [], |row| <(u32, u32)>::try_from(row));
fail.unwrap_err();
Ok(())
}
#[test]
fn test_try_from_row_for_tuple_2() -> Result<()> {
use std::convert::TryFrom;
let conn = Connection::open_in_memory()?;
conn.execute("CREATE TABLE test (a INTEGER, b INTEGER)", [])?;
conn.execute("INSERT INTO test VALUES (42, 47)", [])?;
let val = conn.query_row("SELECT a, b FROM test", [], |row| {
<(u32, u32)>::try_from(row)
})?;
assert_eq!(val, (42, 47));
let fail = conn.query_row("SELECT a, b FROM test", [], |row| {
<(u32, u32, u32)>::try_from(row)
});
fail.unwrap_err();
Ok(())
}
#[test]
fn test_try_from_row_for_tuple_16() -> Result<()> {
use std::convert::TryFrom;
let create_table = "CREATE TABLE test (
a INTEGER,
b INTEGER,
c INTEGER,
d INTEGER,
e INTEGER,
f INTEGER,
g INTEGER,
h INTEGER,
i INTEGER,
j INTEGER,
k INTEGER,
l INTEGER,
m INTEGER,
n INTEGER,
o INTEGER,
p INTEGER
)";
let insert_values = "INSERT INTO test VALUES (
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
)";
type BigTuple = (
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
);
let conn = Connection::open_in_memory()?;
conn.execute(create_table, [])?;
conn.execute(insert_values, [])?;
let val = conn.query_row("SELECT * FROM test", [], |row| BigTuple::try_from(row))?;
// Debug is not implemented for tuples of 16
assert_eq!(val.0, 0);
assert_eq!(val.1, 1);
assert_eq!(val.2, 2);
assert_eq!(val.3, 3);
assert_eq!(val.4, 4);
assert_eq!(val.5, 5);
assert_eq!(val.6, 6);
assert_eq!(val.7, 7);
assert_eq!(val.8, 8);
assert_eq!(val.9, 9);
assert_eq!(val.10, 10);
assert_eq!(val.11, 11);
assert_eq!(val.12, 12);
assert_eq!(val.13, 13);
assert_eq!(val.14, 14);
assert_eq!(val.15, 15);
// We don't test one bigger because it's unimplemented
Ok(())
}
#[test]
#[cfg(feature = "bundled")]
fn pathological_case() -> Result<()> {
let conn = Connection::open_in_memory()?;
conn.execute_batch(
"CREATE TABLE foo(x);
CREATE TRIGGER oops BEFORE INSERT ON foo BEGIN SELECT RAISE(FAIL, 'Boom'); END;",
)?;
let mut stmt = conn.prepare("INSERT INTO foo VALUES (0) RETURNING rowid;")?;
{
let iterator_count = stmt.query_map([], |_| Ok(()))?.count();
assert_eq!(1, iterator_count); // should be 0
use fallible_streaming_iterator::FallibleStreamingIterator;
let fallible_iterator_count = stmt.query([])?.count().unwrap_or(0);
assert_eq!(0, fallible_iterator_count);
}
{
let iterator_last = stmt.query_map([], |_| Ok(()))?.last();
assert!(iterator_last.is_some()); // should be none
use fallible_iterator::FallibleIterator;
let fallible_iterator_last = stmt.query([])?.map(|_| Ok(())).last();
assert!(fallible_iterator_last.is_err());
}
Ok(())
}
#[test]
fn as_ref() -> Result<()> {
let conn = Connection::open_in_memory()?;
let mut stmt = conn.prepare("SELECT 'Lisa' as name, 1 as id")?;
let rows = stmt.query([])?;
assert_eq!(rows.as_ref().unwrap().column_count(), 2);
Ok(())
}
#[test]
fn debug() -> Result<()> {
let conn = Connection::open_in_memory()?;
let mut stmt = conn.prepare(
"SELECT 'Lisa' as name, 1 as id, 3.14 as pi, X'53514C697465' as blob, NULL as void",
)?;
let mut rows = stmt.query([])?;
let row = rows.next()?.unwrap();
let s = format!("{:?}", row);
assert_eq!(
s,
r#"{"name": (Text, "Lisa"), "id": (Integer, 1), "pi": (Real, 3.14), "blob": (Blob, 6), "void": (Null, ())}"#
);
Ok(())
}
}