rayon/
range.rs

1//! Parallel iterator types for [ranges][std::range],
2//! the type for values created by `a..b` expressions
3//!
4//! You will rarely need to interact with this module directly unless you have
5//! need to name one of the iterator types.
6//!
7//! ```
8//! use rayon::prelude::*;
9//!
10//! let r = (0..100u64).into_par_iter()
11//!                    .sum();
12//!
13//! // compare result with sequential calculation
14//! assert_eq!((0..100).sum::<u64>(), r);
15//! ```
16//!
17//! [std::range]: https://doc.rust-lang.org/core/ops/struct.Range.html
18
19use crate::iter::plumbing::*;
20use crate::iter::*;
21use std::char;
22use std::convert::TryFrom;
23use std::ops::Range;
24use std::usize;
25
26/// Parallel iterator over a range, implemented for all integer types and `char`.
27///
28/// **Note:** The `zip` operation requires `IndexedParallelIterator`
29/// which is not implemented for `u64`, `i64`, `u128`, or `i128`.
30///
31/// ```
32/// use rayon::prelude::*;
33///
34/// let p = (0..25usize).into_par_iter()
35///                   .zip(0..25usize)
36///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
37///                   .map(|(x, y)| x * y)
38///                   .sum::<usize>();
39///
40/// let s = (0..25usize).zip(0..25)
41///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
42///                   .map(|(x, y)| x * y)
43///                   .sum();
44///
45/// assert_eq!(p, s);
46/// ```
47#[derive(Debug, Clone)]
48pub struct Iter<T> {
49    range: Range<T>,
50}
51
52/// Implemented for ranges of all primitive integer types and `char`.
53impl<T> IntoParallelIterator for Range<T>
54where
55    Iter<T>: ParallelIterator,
56{
57    type Item = <Iter<T> as ParallelIterator>::Item;
58    type Iter = Iter<T>;
59
60    fn into_par_iter(self) -> Self::Iter {
61        Iter { range: self }
62    }
63}
64
65struct IterProducer<T> {
66    range: Range<T>,
67}
68
69impl<T> IntoIterator for IterProducer<T>
70where
71    Range<T>: Iterator,
72{
73    type Item = <Range<T> as Iterator>::Item;
74    type IntoIter = Range<T>;
75
76    fn into_iter(self) -> Self::IntoIter {
77        self.range
78    }
79}
80
81/// These traits help drive integer type inference. Without them, an unknown `{integer}` type only
82/// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding
83/// these traits on the item type, the compiler can see a more direct constraint to infer like
84/// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example.
85///
86/// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but
87/// we put them in a private modules so they're not actually reachable in our public API.
88mod private {
89    use super::*;
90
91    /// Implementation details of `ParallelIterator for Iter<Self>`
92    pub trait RangeInteger: Sized + Send {
93        private_decl! {}
94
95        fn drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result
96        where
97            C: UnindexedConsumer<Self>;
98
99        fn opt_len(iter: &Iter<Self>) -> Option<usize>;
100    }
101
102    /// Implementation details of `IndexedParallelIterator for Iter<Self>`
103    pub trait IndexedRangeInteger: RangeInteger {
104        private_decl! {}
105
106        fn drive<C>(iter: Iter<Self>, consumer: C) -> C::Result
107        where
108            C: Consumer<Self>;
109
110        fn len(iter: &Iter<Self>) -> usize;
111
112        fn with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output
113        where
114            CB: ProducerCallback<Self>;
115    }
116}
117use private::{IndexedRangeInteger, RangeInteger};
118
119impl<T: RangeInteger> ParallelIterator for Iter<T> {
120    type Item = T;
121
122    fn drive_unindexed<C>(self, consumer: C) -> C::Result
123    where
124        C: UnindexedConsumer<T>,
125    {
126        T::drive_unindexed(self, consumer)
127    }
128
129    #[inline]
130    fn opt_len(&self) -> Option<usize> {
131        T::opt_len(self)
132    }
133}
134
135impl<T: IndexedRangeInteger> IndexedParallelIterator for Iter<T> {
136    fn drive<C>(self, consumer: C) -> C::Result
137    where
138        C: Consumer<T>,
139    {
140        T::drive(self, consumer)
141    }
142
143    #[inline]
144    fn len(&self) -> usize {
145        T::len(self)
146    }
147
148    fn with_producer<CB>(self, callback: CB) -> CB::Output
149    where
150        CB: ProducerCallback<T>,
151    {
152        T::with_producer(self, callback)
153    }
154}
155
156macro_rules! indexed_range_impl {
157    ( $t:ty ) => {
158        impl RangeInteger for $t {
159            private_impl! {}
160
161            fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result
162            where
163                C: UnindexedConsumer<$t>,
164            {
165                bridge(iter, consumer)
166            }
167
168            fn opt_len(iter: &Iter<$t>) -> Option<usize> {
169                Some(iter.range.len())
170            }
171        }
172
173        impl IndexedRangeInteger for $t {
174            private_impl! {}
175
176            fn drive<C>(iter: Iter<$t>, consumer: C) -> C::Result
177            where
178                C: Consumer<$t>,
179            {
180                bridge(iter, consumer)
181            }
182
183            fn len(iter: &Iter<$t>) -> usize {
184                iter.range.len()
185            }
186
187            fn with_producer<CB>(iter: Iter<$t>, callback: CB) -> CB::Output
188            where
189                CB: ProducerCallback<$t>,
190            {
191                callback.callback(IterProducer { range: iter.range })
192            }
193        }
194
195        impl Producer for IterProducer<$t> {
196            type Item = <Range<$t> as Iterator>::Item;
197            type IntoIter = Range<$t>;
198            fn into_iter(self) -> Self::IntoIter {
199                self.range
200            }
201
202            fn split_at(self, index: usize) -> (Self, Self) {
203                assert!(index <= self.range.len());
204                // For signed $t, the length and requested index could be greater than $t::MAX, and
205                // then `index as $t` could wrap to negative, so wrapping_add is necessary.
206                let mid = self.range.start.wrapping_add(index as $t);
207                let left = self.range.start..mid;
208                let right = mid..self.range.end;
209                (IterProducer { range: left }, IterProducer { range: right })
210            }
211        }
212    };
213}
214
215trait UnindexedRangeLen<L> {
216    fn len(&self) -> L;
217}
218
219macro_rules! unindexed_range_impl {
220    ( $t:ty, $len_t:ty ) => {
221        impl UnindexedRangeLen<$len_t> for Range<$t> {
222            fn len(&self) -> $len_t {
223                let &Range { start, end } = self;
224                if end > start {
225                    end.wrapping_sub(start) as $len_t
226                } else {
227                    0
228                }
229            }
230        }
231
232        impl RangeInteger for $t {
233            private_impl! {}
234
235            fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result
236            where
237                C: UnindexedConsumer<$t>,
238            {
239                #[inline]
240                fn offset(start: $t) -> impl Fn(usize) -> $t {
241                    move |i| start.wrapping_add(i as $t)
242                }
243
244                if let Some(len) = iter.opt_len() {
245                    // Drive this in indexed mode for better `collect`.
246                    (0..len)
247                        .into_par_iter()
248                        .map(offset(iter.range.start))
249                        .drive(consumer)
250                } else {
251                    bridge_unindexed(IterProducer { range: iter.range }, consumer)
252                }
253            }
254
255            fn opt_len(iter: &Iter<$t>) -> Option<usize> {
256                usize::try_from(iter.range.len()).ok()
257            }
258        }
259
260        impl UnindexedProducer for IterProducer<$t> {
261            type Item = $t;
262
263            fn split(mut self) -> (Self, Option<Self>) {
264                let index = self.range.len() / 2;
265                if index > 0 {
266                    let mid = self.range.start.wrapping_add(index as $t);
267                    let right = mid..self.range.end;
268                    self.range.end = mid;
269                    (self, Some(IterProducer { range: right }))
270                } else {
271                    (self, None)
272                }
273            }
274
275            fn fold_with<F>(self, folder: F) -> F
276            where
277                F: Folder<Self::Item>,
278            {
279                folder.consume_iter(self)
280            }
281        }
282    };
283}
284
285// all Range<T> with ExactSizeIterator
286indexed_range_impl! {u8}
287indexed_range_impl! {u16}
288indexed_range_impl! {u32}
289indexed_range_impl! {usize}
290indexed_range_impl! {i8}
291indexed_range_impl! {i16}
292indexed_range_impl! {i32}
293indexed_range_impl! {isize}
294
295// other Range<T> with just Iterator
296unindexed_range_impl! {u64, u64}
297unindexed_range_impl! {i64, u64}
298unindexed_range_impl! {u128, u128}
299unindexed_range_impl! {i128, u128}
300
301// char is special because of the surrogate range hole
302macro_rules! convert_char {
303    ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => {{
304        let start = $self.range.start as u32;
305        let end = $self.range.end as u32;
306        if start < 0xD800 && 0xE000 < end {
307            // chain the before and after surrogate range fragments
308            (start..0xD800)
309                .into_par_iter()
310                .chain(0xE000..end)
311                .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
312                .$method($( $arg ),*)
313        } else {
314            // no surrogate range to worry about
315            (start..end)
316                .into_par_iter()
317                .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
318                .$method($( $arg ),*)
319        }
320    }};
321}
322
323impl ParallelIterator for Iter<char> {
324    type Item = char;
325
326    fn drive_unindexed<C>(self, consumer: C) -> C::Result
327    where
328        C: UnindexedConsumer<Self::Item>,
329    {
330        convert_char!(self.drive(consumer))
331    }
332
333    fn opt_len(&self) -> Option<usize> {
334        Some(self.len())
335    }
336}
337
338impl IndexedParallelIterator for Iter<char> {
339    // Split at the surrogate range first if we're allowed to
340    fn drive<C>(self, consumer: C) -> C::Result
341    where
342        C: Consumer<Self::Item>,
343    {
344        convert_char!(self.drive(consumer))
345    }
346
347    fn len(&self) -> usize {
348        // Taken from <char as Step>::steps_between
349        let start = self.range.start as u32;
350        let end = self.range.end as u32;
351        if start < end {
352            let mut count = end - start;
353            if start < 0xD800 && 0xE000 <= end {
354                count -= 0x800
355            }
356            count as usize
357        } else {
358            0
359        }
360    }
361
362    fn with_producer<CB>(self, callback: CB) -> CB::Output
363    where
364        CB: ProducerCallback<Self::Item>,
365    {
366        convert_char!(self.with_producer(callback))
367    }
368}
369
370#[test]
371fn check_range_split_at_overflow() {
372    // Note, this split index overflows i8!
373    let producer = IterProducer { range: -100i8..100 };
374    let (left, right) = producer.split_at(150);
375    let r1: i32 = left.range.map(i32::from).sum();
376    let r2: i32 = right.range.map(i32::from).sum();
377    assert_eq!(r1 + r2, -100);
378}
379
380#[test]
381fn test_i128_len_doesnt_overflow() {
382    use std::{i128, u128};
383
384    // Using parse because some versions of rust don't allow long literals
385    let octillion: i128 = "1000000000000000000000000000".parse().unwrap();
386    let producer = IterProducer {
387        range: 0..octillion,
388    };
389
390    assert_eq!(octillion as u128, producer.range.len());
391    assert_eq!(octillion as u128, (0..octillion).len());
392    assert_eq!(2 * octillion as u128, (-octillion..octillion).len());
393
394    assert_eq!(u128::MAX, (i128::MIN..i128::MAX).len());
395}
396
397#[test]
398fn test_u64_opt_len() {
399    use std::{u64, usize};
400    assert_eq!(Some(100), (0..100u64).into_par_iter().opt_len());
401    assert_eq!(
402        Some(usize::MAX),
403        (0..usize::MAX as u64).into_par_iter().opt_len()
404    );
405    if (usize::MAX as u64) < u64::MAX {
406        assert_eq!(
407            None,
408            (0..(usize::MAX as u64).wrapping_add(1))
409                .into_par_iter()
410                .opt_len()
411        );
412        assert_eq!(None, (0..u64::MAX).into_par_iter().opt_len());
413    }
414}
415
416#[test]
417fn test_u128_opt_len() {
418    use std::{u128, usize};
419    assert_eq!(Some(100), (0..100u128).into_par_iter().opt_len());
420    assert_eq!(
421        Some(usize::MAX),
422        (0..usize::MAX as u128).into_par_iter().opt_len()
423    );
424    assert_eq!(None, (0..1 + usize::MAX as u128).into_par_iter().opt_len());
425    assert_eq!(None, (0..u128::MAX).into_par_iter().opt_len());
426}
427
428// `usize as i64` can overflow, so make sure to wrap it appropriately
429// when using the `opt_len` "indexed" mode.
430#[test]
431#[cfg(target_pointer_width = "64")]
432fn test_usize_i64_overflow() {
433    use crate::ThreadPoolBuilder;
434    use std::i64;
435
436    let iter = (-2..i64::MAX).into_par_iter();
437    assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 2));
438
439    // always run with multiple threads to split into, or this will take forever...
440    let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap();
441    pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX - 1)));
442}
443
444#[test]
445fn test_issue_833() {
446    fn is_even(n: i64) -> bool {
447        n % 2 == 0
448    }
449
450    // The integer type should be inferred from `is_even`
451    let v: Vec<_> = (1..100).into_par_iter().filter(|&x| is_even(x)).collect();
452    assert!(v.into_iter().eq((2..100).step_by(2)));
453
454    // Try examples with indexed iterators too
455    let pos = (0..100).into_par_iter().position_any(|x| x == 50i16);
456    assert_eq!(pos, Some(50usize));
457
458    assert!((0..100)
459        .into_par_iter()
460        .zip(0..100)
461        .all(|(a, b)| i16::eq(&a, &b)));
462}