pub struct SplaySet<T> { /* private fields */ }
Expand description
A set based on splay tree.
A splay tree based set is a self-adjusting data structure.
It performs insertion, removal and look-up in O(log n)
amortized time.
It is a logic error for a key to be modified in such a way that
the key’s ordering relative to any other key,
as determined by the Ord
trait, changes while it is in the map.
This is normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
set.insert("baz");
assert_eq!(set.len(), 3);
assert!(set.contains("bar"));
assert!(set.remove("bar"));
assert!(!set.contains("bar"));
assert_eq!(vec!["baz", "foo"], set.into_iter().collect::<Vec<_>>());
Implementations§
Source§impl<T> SplaySet<T>where
T: Ord,
impl<T> SplaySet<T>where
T: Ord,
Sourcepub fn new() -> Self
pub fn new() -> Self
Makes a new SplaySet
§Examples
use splay_tree::SplaySet;
let set: SplaySet<()> = SplaySet::new();
assert!(set.is_empty());
Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clears the set, removing all values.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.clear();
assert!(set.is_empty());
Sourcepub fn contains<Q>(&mut self, value: &Q) -> bool
pub fn contains<Q>(&mut self, value: &Q) -> bool
Returns true if the set contains a value.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
Because SplaySet
is a self-adjusting amortized data structure,
this function requires the mut
qualifier for self
.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert!(set.contains("foo"));
assert!(!set.contains("bar"));
Sourcepub fn contains_immut<Q>(&self, value: &Q) -> bool
pub fn contains_immut<Q>(&self, value: &Q) -> bool
Immutable version of SplaySet::contains()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert!(set.contains_immut("foo"));
assert!(!set.contains_immut("bar"));
Sourcepub fn get<Q>(&mut self, value: &Q) -> Option<&T>
pub fn get<Q>(&mut self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
Because SplaySet
is a self-adjusting amortized data structure,
this function requires the mut
qualifier for self
.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.get("foo"), Some(&"foo"));
assert_eq!(set.get("bar"), None);
Sourcepub fn get_immut<Q>(&self, value: &Q) -> Option<&T>
pub fn get_immut<Q>(&self, value: &Q) -> Option<&T>
Immutable version of SplaySet::get()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.get_immut("foo"), Some(&"foo"));
assert_eq!(set.get_immut("bar"), None);
Sourcepub fn find_lower_bound<Q>(&mut self, value: &Q) -> Option<&T>
pub fn find_lower_bound<Q>(&mut self, value: &Q) -> Option<&T>
Finds a minimum element which
satisfies “greater than or equal to value
” condition in the set.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.find_lower_bound(&0), Some(&1));
assert_eq!(set.find_lower_bound(&1), Some(&1));
assert_eq!(set.find_lower_bound(&4), None);
Sourcepub fn find_lower_bound_immut<Q>(&self, value: &Q) -> Option<&T>
pub fn find_lower_bound_immut<Q>(&self, value: &Q) -> Option<&T>
Immutable version of SplaySet::find_lower_bound()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.find_lower_bound_immut(&0), Some(&1));
assert_eq!(set.find_lower_bound_immut(&1), Some(&1));
assert_eq!(set.find_lower_bound_immut(&4), None);
Sourcepub fn find_upper_bound<Q>(&mut self, value: &Q) -> Option<&T>
pub fn find_upper_bound<Q>(&mut self, value: &Q) -> Option<&T>
Finds a minimum element which satisfies “greater than value
” condition in the set.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.find_upper_bound(&0), Some(&1));
assert_eq!(set.find_upper_bound(&1), Some(&3));
assert_eq!(set.find_upper_bound(&4), None);
Sourcepub fn find_upper_bound_immut<Q>(&self, value: &Q) -> Option<&T>
pub fn find_upper_bound_immut<Q>(&self, value: &Q) -> Option<&T>
Immutable version of SplaySet::find_upper_bound()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.find_upper_bound_immut(&0), Some(&1));
assert_eq!(set.find_upper_bound_immut(&1), Some(&3));
assert_eq!(set.find_upper_bound_immut(&4), None);
Sourcepub fn smallest(&mut self) -> Option<&T>
pub fn smallest(&mut self) -> Option<&T>
Gets the minimum value in the map.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.smallest(), Some(&1));
Sourcepub fn smallest_immut(&self) -> Option<&T>
pub fn smallest_immut(&self) -> Option<&T>
Immutable version of SplaySet::smallest()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.smallest_immut(), Some(&1));
Sourcepub fn take_smallest(&mut self) -> Option<T>
pub fn take_smallest(&mut self) -> Option<T>
Takes the minimum value in the map.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.take_smallest(), Some(1));
assert_eq!(set.take_smallest(), Some(3));
assert_eq!(set.take_smallest(), None);
Sourcepub fn largest(&mut self) -> Option<&T>
pub fn largest(&mut self) -> Option<&T>
Gets the maximum value in the map.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.largest(), Some(&3));
Sourcepub fn largest_immut(&self) -> Option<&T>
pub fn largest_immut(&self) -> Option<&T>
Immutable version of SplaySet::largest()
.
Note that this method could be less efficient than the mutable version.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.largest_immut(), Some(&3));
Sourcepub fn take_largest(&mut self) -> Option<T>
pub fn take_largest(&mut self) -> Option<T>
Takes the maximum value in the map.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert(1);
set.insert(3);
assert_eq!(set.take_largest(), Some(3));
assert_eq!(set.take_largest(), Some(1));
assert_eq!(set.take_largest(), None);
Sourcepub fn insert(&mut self, value: T) -> bool
pub fn insert(&mut self, value: T) -> bool
Adds a value to the set.
If the set did not have this value present, true
is returned.
If the set did have this value present, false
is returned,
and the entry is not updated.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
assert!(set.insert("foo"));
assert!(!set.insert("foo"));
assert_eq!(set.len(), 1);
Sourcepub fn replace(&mut self, value: T) -> Option<T>
pub fn replace(&mut self, value: T) -> Option<T>
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
assert_eq!(set.replace("foo"), None);
assert_eq!(set.replace("foo"), Some("foo"));
Sourcepub fn remove<Q>(&mut self, value: &Q) -> bool
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns true
is the value was present in the set.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.remove("foo"), true);
assert_eq!(set.remove("foo"), false);
Sourcepub fn take<Q>(&mut self, value: &Q) -> Option<T>
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.take("foo"), Some("foo"));
assert_eq!(set.take("foo"), None);
Sourcepub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, T> ⓘ
pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, T> ⓘ
Visits the values representing the difference, in ascending order.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
assert_eq!(a.difference(&b).cloned().collect::<Vec<_>>(),
[1]);
Sourcepub fn symmetric_difference<'a>(
&'a self,
other: &'a Self,
) -> SymmetricDifference<'a, T> ⓘ
pub fn symmetric_difference<'a>( &'a self, other: &'a Self, ) -> SymmetricDifference<'a, T> ⓘ
Visits the values representing the symmetric difference, in ascending order.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
assert_eq!(a.symmetric_difference(&b).cloned().collect::<Vec<_>>(),
[1, 4]);
Sourcepub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T> ⓘ
pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T> ⓘ
Visits the values representing the intersection, in ascending order.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
assert_eq!(a.intersection(&b).cloned().collect::<Vec<_>>(),
[2, 3]);
Sourcepub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T> ⓘ
pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T> ⓘ
Visits the values representing the union, in ascending order.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
assert_eq!(a.union(&b).cloned().collect::<Vec<_>>(),
[1, 2, 3, 4]);
Sourcepub fn is_disjoint(&self, other: &Self) -> bool
pub fn is_disjoint(&self, other: &Self) -> bool
Returns true
if the set has no elements in common with other
.
This is equivalent to checking for an empty intersection.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![4, 5, 6].into_iter().collect();
assert!(!a.is_disjoint(&b));
assert!(!b.is_disjoint(&c));
assert!(a.is_disjoint(&c));
assert!(c.is_disjoint(&a));
Sourcepub fn is_subset(&self, other: &Self) -> bool
pub fn is_subset(&self, other: &Self) -> bool
Returns true
if the set is a subset of another.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![1, 2, 3, 4].into_iter().collect();
assert!(!a.is_subset(&b));
assert!(!b.is_subset(&a));
assert!(!c.is_subset(&a));
assert!(a.is_subset(&c));
assert!(b.is_subset(&c));
assert!(c.is_subset(&c));
Sourcepub fn is_superset(&self, other: &Self) -> bool
pub fn is_superset(&self, other: &Self) -> bool
Returns true
if the set is a superset of another.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![1, 2, 3, 4].into_iter().collect();
assert!(!a.is_superset(&b));
assert!(!b.is_superset(&a));
assert!(!a.is_superset(&c));
assert!(c.is_superset(&a));
assert!(c.is_superset(&b));
assert!(c.is_superset(&c));
Sourcepub fn as_vec_like_mut(&mut self) -> VecLikeMut<'_, T>
pub fn as_vec_like_mut(&mut self) -> VecLikeMut<'_, T>
Returns a vector like mutable view of the set.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
{
let mut vec = set.as_vec_like_mut();
vec.push("baz");
assert_eq!(vec.get(0), Some(&"foo"));
assert_eq!(vec.get(2), Some(&"baz"));
assert_eq!(vec.find_index(&"bar"), Some(1));
assert_eq!(vec.iter().cloned().collect::<Vec<_>>(),
["foo", "bar", "baz"]);
}
assert_eq!(set.iter().cloned().collect::<Vec<_>>(),
["bar", "baz", "foo"]);
Source§impl<T> SplaySet<T>
impl<T> SplaySet<T>
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
assert_eq!(set.len(), 2);
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the set contains no elements.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
assert!(set.is_empty());
set.insert("foo");
assert!(!set.is_empty());
set.clear();
assert!(set.is_empty());
Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Gets an iterator over the SplaySet’s contents, in sorted order.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
set.insert("baz");
assert_eq!(set.iter().collect::<Vec<_>>(), [&"bar", &"baz", &"foo"]);
Sourcepub fn as_vec_like(&self) -> VecLike<'_, T>
pub fn as_vec_like(&self) -> VecLike<'_, T>
Returns a vector like view of the set.
§Examples
use splay_tree::SplaySet;
let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
{
let mut vec = set.as_vec_like();
assert_eq!(vec.get(0), Some(&"foo"));
assert_eq!(vec.get(1), Some(&"bar"));
assert_eq!(vec.iter().cloned().collect::<Vec<_>>(),
["foo", "bar"]);
}
assert_eq!(set.iter().cloned().collect::<Vec<_>>(),
["bar", "foo"]);
Trait Implementations§
Source§impl<'a, 'b, T> BitAnd<&'b SplaySet<T>> for &'a SplaySet<T>
impl<'a, 'b, T> BitAnd<&'b SplaySet<T>> for &'a SplaySet<T>
Source§fn bitand(self, rhs: &SplaySet<T>) -> SplaySet<T>
fn bitand(self, rhs: &SplaySet<T>) -> SplaySet<T>
Returns the intersection of self
and rhs
as a new SplaySet<T>
.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();
assert_eq!((&a & &b).into_iter().collect::<Vec<_>>(),
[3]);
Source§impl<'a, 'b, T> BitOr<&'b SplaySet<T>> for &'a SplaySet<T>
impl<'a, 'b, T> BitOr<&'b SplaySet<T>> for &'a SplaySet<T>
Source§fn bitor(self, rhs: &SplaySet<T>) -> SplaySet<T>
fn bitor(self, rhs: &SplaySet<T>) -> SplaySet<T>
Returns the union of self
and rhs
as a new SplaySet<T>
.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();
assert_eq!((&a | &b).into_iter().collect::<Vec<_>>(),
[1, 2, 3, 4, 5]);
Source§impl<'a, 'b, T> BitXor<&'b SplaySet<T>> for &'a SplaySet<T>
impl<'a, 'b, T> BitXor<&'b SplaySet<T>> for &'a SplaySet<T>
Source§fn bitxor(self, rhs: &SplaySet<T>) -> SplaySet<T>
fn bitxor(self, rhs: &SplaySet<T>) -> SplaySet<T>
Returns the symmetric difference of self
and rhs
as a new SplaySet<T>
.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();
assert_eq!((&a ^ &b).into_iter().collect::<Vec<_>>(),
[1, 2, 4, 5]);
Source§impl<'a, T> Extend<&'a T> for SplaySet<T>
impl<'a, T> Extend<&'a T> for SplaySet<T>
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> Extend<T> for SplaySet<T>where
T: Ord,
impl<T> Extend<T> for SplaySet<T>where
T: Ord,
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> FromIterator<T> for SplaySet<T>where
T: Ord,
impl<T> FromIterator<T> for SplaySet<T>where
T: Ord,
Source§fn from_iter<I>(iter: I) -> Selfwhere
I: IntoIterator<Item = T>,
fn from_iter<I>(iter: I) -> Selfwhere
I: IntoIterator<Item = T>,
Source§impl<'a, T> IntoIterator for &'a SplaySet<T>
impl<'a, T> IntoIterator for &'a SplaySet<T>
Source§impl<T> IntoIterator for SplaySet<T>
impl<T> IntoIterator for SplaySet<T>
Source§impl<T: Ord> Ord for SplaySet<T>
impl<T: Ord> Ord for SplaySet<T>
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl<T: PartialOrd> PartialOrd for SplaySet<T>
impl<T: PartialOrd> PartialOrd for SplaySet<T>
Source§impl<'a, 'b, T> Sub<&'b SplaySet<T>> for &'a SplaySet<T>
impl<'a, 'b, T> Sub<&'b SplaySet<T>> for &'a SplaySet<T>
Source§fn sub(self, rhs: &SplaySet<T>) -> SplaySet<T>
fn sub(self, rhs: &SplaySet<T>) -> SplaySet<T>
Returns the difference of self
and rhs
as a new SplaySet<T>
.
§Examples
use splay_tree::SplaySet;
let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();
assert_eq!((&a - &b).into_iter().collect::<Vec<_>>(),
[1, 2]);