typewit 1.9.0

type-witness-based abstractions, mostly for emulating polymorphism in const fns
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
[![Rust](https://github.com/rodrimati1992/typewit/workflows/Rust/badge.svg)](https://github.com/rodrimati1992/typewit/actions)
[![crates-io](https://img.shields.io/crates/v/typewit.svg)](https://crates.io/crates/typewit)
[![api-docs](https://docs.rs/typewit/badge.svg)](https://docs.rs/typewit/*)


This crate provides abstractions for creating
[type witnesses](#what-are-type-witnesses).

The inciting motivation for this crate is emulating trait polymorphism in `const fn`
(as of 2023-10-01, it's not possible to call trait methods in const contexts on stable).

# What are type witnesses

Type witnesses are enums that allow coercing between a type parameter and a
range of possible types (one per variant).

The simplest type witness is [`TypeEq<L, R>`](crate::TypeEq),
which only allows coercing between `L` and `R`.

Most type witnesses are enums with [`TypeEq`] fields,
which can coerce between a type parameter and as many types as there are variants.

# Examples

<span id="example0"></span>

### Polymorphic function

This demonstrates how one can write a return-type-polymorphic `const fn`
(as of 2023-10-01, trait methods can't be called in const fns on stable)

```rust
use typewit::{MakeTypeWitness, TypeEq};

assert_eq!(returnal::<u8>(), 3);
assert_eq!(returnal::<&str>(), "hello");


const fn returnal<'a, R>() -> R
where
    RetWitness<'a, R>: MakeTypeWitness,
{
    match MakeTypeWitness::MAKE {
        RetWitness::U8(te) => {
            // `te` (a `TypeEq<R, u8>`) allows coercing between `R` and `u8`,
            // because `TypeEq` is a value-level proof that both types are the same.
            // `te.to_left(...)` goes from `u8` to `R`.
            te.to_left(3u8)
        }
        RetWitness::Str(te) => {
            // `te` is a `TypeEq<R, &'a str>`
            // `te.to_left(...)` goes from `&'a str` to `R`.
            te.to_left("hello")
        }
    }
}

// This macro declares a type witness enum
typewit::simple_type_witness! {
    // Declares `enum RetWitness<'a, __Wit>` 
    // (the `__Wit` type parameter is implicitly added after all generics)
    enum RetWitness<'a> {
        // This variant requires `__Wit == u8`
        U8 = u8,
   
        // This variant requires `__Wit == &'a str`
        Str = &'a str,
    }
}
```

<span id="example-uses-type-fn"></span>
### Indexing polymorphism

This function demonstrates const fn polymorphism
and projecting [`TypeEq`] by implementing [`TypeFn`].

(this example requires Rust 1.71.0, because it uses `<[T]>::split_at` in a const context.
```rust
use std::ops::Range;

use typewit::{HasTypeWitness, TypeEq};

fn main() {
    let array = [3, 5, 8, 13, 21, 34, 55, 89];

    assert_eq!(index(&array, 0), &3);
    assert_eq!(index(&array, 3), &13);
    assert_eq!(index(&array, 0..4), [3, 5, 8, 13]);
    assert_eq!(index(&array, 3..5), [13, 21]);
}

const fn index<T, I>(slice: &[T], idx: I) -> &SliceIndexRet<I, T>
where
    I: SliceIndex<T>,
{
    // `I::WITNESS` is `<I as HasTypeWitness<IndexWitness<I>>>::WITNESS`,
    match I::WITNESS {
        IndexWitness::Usize(arg_te) => {
            // `arg_te` (a `TypeEq<I, usize>`) allows coercing between `I` and `usize`,
            // because `TypeEq` is a value-level proof that both types are the same.
            let idx: usize = arg_te.to_right(idx);

            // using the `TypeFn` impl for `FnSliceIndexRet<T>` to 
            // map `TypeEq<I, usize>` 
            // to  `TypeEq<SliceIndexRet<I, T>, SliceIndexRet<usize, T>>`
            arg_te.project::<FnSliceIndexRet<T>>()
                // converts`TypeEq<SliceIndexRet<I, T>, T>` 
                //      to `TypeEq<&SliceIndexRet<I, T>, &T>`
                .in_ref()
                .to_left(&slice[idx])
        }
        IndexWitness::Range(arg_te) => {
            let range: Range<usize> = arg_te.to_right(idx);
            let ret: &[T] = slice_range(slice, range);
            arg_te.project::<FnSliceIndexRet<T>>().in_ref().to_left(ret)
        }
    }
}

// This macro declares a type witness enum
typewit::simple_type_witness! {
    // Declares `enum IndexWitness<__Wit>` 
    // (the `__Wit` type parameter is implicitly added after all generics)
    enum IndexWitness {
        // This variant requires `__Wit == usize`
        Usize = usize,
   
        // This variant requires `__Wit == Range<usize>`
        Range = Range<usize>,
    }
}

/// Trait for all types that can be used as slice indices
/// 
/// The `HasTypeWitness` supertrait allows getting a `IndexWitness<Self>`
/// with its `WITNESS` associated constant.
trait SliceIndex<T>: HasTypeWitness<IndexWitness<Self>> + Sized {
    type Returns: ?Sized;
}
impl<T> SliceIndex<T> for usize {
    type Returns = T;
}
impl<T> SliceIndex<T> for Range<usize> {
    type Returns = [T];
}

type SliceIndexRet<I, T> = <I as SliceIndex<T>>::Returns;

// Declares `struct FnSliceIndexRet<T>`
// a type-level function (TypeFn implementor) from `I` to `SliceIndexRet<I, T>`
typewit::type_fn! {
    struct FnSliceIndexRet<T>;

    impl<I: SliceIndex<T>> I => SliceIndexRet<I, T>
}

const fn slice_range<T>(slice: &[T], range: Range<usize>) -> &[T] {
    let suffix = slice.split_at(range.start).1;
    suffix.split_at(range.end - range.start).0
}

```

When the wrong type is passed for the index,
the compile-time error is the same as with normal generic functions:
```text
error[E0277]: the trait bound `RangeFull: SliceIndex<{integer}>` is not satisfied
  --> src/main.rs:43:30
   |
13 |     assert_eq!(index(&array, ..), [13, 21]);
   |                -----         ^^ the trait `SliceIndex<{integer}>` is not implemented for `RangeFull`
   |                |
   |                required by a bound introduced by this call
   |
   = help: the following other types implement trait `SliceIndex<T>`:
             std::ops::Range<usize>
             usize
```

### Downcasting const generic type

This example demonstrates "downcasting" from a type with a const parameter to 
a concrete instance of that type.

```rust
use typewit::{const_marker::Usize, TypeCmp, TypeEq};

assert_eq!(*mutate(&mut Arr([])), Arr([]));
assert_eq!(*mutate(&mut Arr([1])), Arr([1]));
assert_eq!(*mutate(&mut Arr([1, 2])), Arr([1, 2]));
assert_eq!(*mutate(&mut Arr([1, 2, 3])), Arr([1, 3, 6])); // this is different!
assert_eq!(*mutate(&mut Arr([1, 2, 3, 4])), Arr([1, 2, 3, 4])); 

#[derive(Debug, PartialEq)]
struct Arr<const N: usize>([u8; N]);

fn mutate<const N: usize>(arr: &mut Arr<N>) -> &mut Arr<N> {
    if let TypeCmp::Eq(te) =  Usize::<N>.equals(Usize::<3>) {
        let tem = te // `te` is a `TypeEq<Usize<N>, Usize<3>>`
            .project::<GArr>() // returns `TypeEq<Arr<N>, Arr<3>>`
            .in_mut(); // returns `TypeEq<&mut Arr<N>, &mut Arr<3>>`

        // `tem.to_right(arr)` downcasts `arr` to `&mut Arr<3>`
        tetra_sum(tem.to_right(arr));
    }

    arr
}

fn tetra_sum(arr: &mut Arr<3>) {
    arr.0[1] += arr.0[0];
    arr.0[2] += arr.0[1];
}

// Declares `struct GArr`
// a type-level function (TypeFn implementor) from `Usize<N>` to `Arr<N>`
typewit::type_fn!{
    struct GArr;

    impl<const N: usize> Usize<N> => Arr<N>
}
```

### Builder

Using a type witness to help encode a type-level enum,
and to match on that type-level enum inside of a function.

The type-level enum is used to track the initialization of fields in a builder.

This example requires Rust 1.65.0, because it uses Generic Associated Types.
```rust
use typewit::HasTypeWitness;

fn main() {
    // all default fields
    assert_eq!(
        StructBuilder::new().build(), 
        Struct{foo: "default value".into(), bar: vec![3, 5, 8]},
    );

    // defaulted bar field
    assert_eq!(
        StructBuilder::new().foo("hello").build(), 
        Struct{foo: "hello".into(), bar: vec![3, 5, 8]},
    );

    // defaulted foo field
    assert_eq!(
        StructBuilder::new().bar([13, 21, 34]).build(), 
        Struct{foo: "default value".into(), bar: vec![13, 21, 34]},
    );

    // all initialized fields
    assert_eq!(
        StructBuilder::new().foo("world").bar([55, 89]).build(), 
        Struct{foo: "world".into(), bar: vec![55, 89]},
    );
}


#[derive(Debug, PartialEq, Eq)]
struct Struct {
    foo: String,
    bar: Vec<u32>,
}

struct StructBuilder<FooInit: InitState, BarInit: InitState> {
    // If `FooInit` is `Uninit`, then this field is a `()`
    // If `FooInit` is `Init`, then this field is a `String`
    foo: BuilderField<FooInit, String>,

    // If `BarInit` is `Uninit`, then this field is a `()`
    // If `BarInit` is `Init`, then this field is a `Vec<u32>`
    bar: BuilderField<BarInit, Vec<u32>>,
}

impl StructBuilder<Uninit, Uninit> {
    pub const fn new() -> Self {
        Self {
            foo: (),
            bar: (),
        }
    }
}

impl<FooInit: InitState, BarInit: InitState> StructBuilder<FooInit, BarInit> {
    /// Sets the `foo` field
    pub fn foo(self, foo: impl Into<String>) -> StructBuilder<Init, BarInit> {
        StructBuilder {
            foo: foo.into(),
            bar: self.bar,
        }
    }

    /// Sets the `bar` field
    pub fn bar(self, bar: impl Into<Vec<u32>>) -> StructBuilder<FooInit, Init> {
        StructBuilder {
            foo: self.foo,
            bar: bar.into(),
        }
    }

    /// Builds `Struct`, 
    /// providing default values for fields that haven't been set.
    pub fn build(self) -> Struct {
        Struct {
            foo: init_or_else::<FooInit, _, _>(self.foo, || "default value".to_string()),
            bar: init_or_else::<BarInit, _, _>(self.bar, || vec![3, 5, 8]),
        }
    }
}

// Emulates a type-level `enum InitState { Init, Uninit }`
trait InitState: Sized + HasTypeWitness<InitWit<Self>> {
    // How a builder represents an initialized/uninitialized field.
    // If `Self` is `Uninit`, then this is `()`.
    // If `Self` is `Init`, then this is `T`.
    type BuilderField<T>;
}

// If `I` is `Uninit`, then this evaluates to `()`
// If `I` is `Init`, then this evaluates to `T`
type BuilderField<I, T> = <I as InitState>::BuilderField::<T>;

/// Gets `T` out of `maybe_init` if it's actually initialized,
/// otherwise returns `else_()`.
fn init_or_else<I, T, F>(maybe_init: BuilderField<I, T>, else_: F) -> T
where
    I: InitState,
    F: FnOnce() -> T
{
    typewit::type_fn! {
        // Declares the `HelperFn` type-level function (TypeFn implementor)
        // from `I` to `BuilderField<I, T>`
        struct HelperFn<T>;
        impl<I: InitState> I => BuilderField<I, T>
    }

    // matching on the type-level `InitState` enum by using `InitWit`.
    // `WITNESS` comes from the `HasTypeWitness` trait
    match I::WITNESS {
        // `te: TypeEq<FooInit, Init>`
        InitWit::InitW(te) => {
            te.map(HelperFn::NEW) //: TypeEq<BuilderField<I, T>, T>
              .to_right(maybe_init)
        }
        InitWit::UninitW(_) => else_(),
    }
}

// Emulates a type-level `InitState::Init` variant.
// Marks a field as initialized.
enum Init {}

impl InitState for Init {
    type BuilderField<T> = T;
}

// Emulates a type-level `InitState::Uninit` variant.
// Marks a field as uninitialized.
enum Uninit {}

impl InitState for Uninit {
    type BuilderField<T> = ();
}

typewit::simple_type_witness! {
    // Declares `enum InitWit<__Wit>`, a type witness.
    // (the `__Wit` type parameter is implicitly added after all generics)
    enum InitWit {
        // This variant requires `__Wit == Init`
        InitW = Init,
        // This variant requires `__Wit == Uninit`
        UninitW = Uninit,
    }
}
```

# Cargo features

These are the features of this crate.

### Default-features

These features are enabled by default:

- `"proc_macros"`: uses proc macros to improve compile-errors involving 
macro-generated impls.

### Rust-versions and standard crates

These features enable items that have a minimum Rust version:

- `"rust_stable"`: enables all the `"rust_1_*"` features.

- `"rust_1_65"`: enables the [`type_constructors`] module,
the [`methods`] module,
and the `"rust_1_61"` feature.

- `"rust_1_61"`: enables [`MetaBaseTypeWit`],
[`BaseTypeWitness`],
and the `{TypeCmp, TypeNe}::{zip*, in_array}` methods.

These features enable items that require a non-`core` standard crate:

- `"alloc"`: enable items that use anything from the standard `alloc` crate.

### Nightly features

These features require the nightly Rust compiler:

- `"adt_const_marker"`:
enables the `"rust_stable"` crate feature,
and marker types in the [`const_marker`] module that have
non-primitive `const` parameters.

- `"nightly_mut_refs"`:
Enables the `"rust_stable"` and `"mut_refs"` crate features,
and turns functions that use mutable references into `const fn`s.

### Future-Rust features

These features currently require future compiler versions:

- `"mut_refs"`: turns functions that take mutable references into `const fn`s.
note: as of October 2023, 
this crate feature requires a stable compiler from the future.

# No-std support

`typewit` is `#![no_std]`, it can be used anywhere Rust can be used.

You need to enable the `"alloc"` feature to enable items that use anything 
from the standard `alloc` crate.

# Minimum Supported Rust Version

`typewit` supports Rust 1.57.0.

Features that require newer versions of Rust, or the nightly compiler,
need to be explicitly enabled with crate features.






[`TypeCmp`]: https://docs.rs/typewit/latest/typewit/enum.TypeCmp.html
[`TypeEq`]: https://docs.rs/typewit/latest/typewit/struct.TypeEq.html
[`TypeNe`]: https://docs.rs/typewit/latest/typewit/struct.TypeEq.html
[`TypeFn`]: https://docs.rs/typewit/latest/typewit/type_fn/trait.TypeFn.html
[`const_marker`]: https://docs.rs/typewit/latest/typewit/const_marker/index.html
[`type_constructors`]: https://docs.rs/typewit/latest/typewit/type_constructors/index.html
[`methods`]: https://docs.rs/typewit/latest/typewit/methods/index.html
[`MetaBaseTypeWit`]: https://docs.rs/typewit/latest/typewit/enum.MetaBaseTypeWit.html
[`BaseTypeWitness`]: https://docs.rs/typewit/latest/typewit/trait.BaseTypeWitness.html