Trait curve25519_dalek_ng::traits::MultiscalarMul[][src]

pub trait MultiscalarMul {
    type Point;
    fn multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Point
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<Self::Point>
; }
Expand description

A trait for constant-time multiscalar multiplication without precomputation.

Associated Types

The type of point being multiplied, e.g., RistrettoPoint.

Required methods

Given an iterator of (possibly secret) scalars and an iterator of public points, compute $$ Q = c_1 P_1 + \cdots + c_n P_n. $$

It is an error to call this function with two iterators of different lengths.

Examples

The trait bound aims for maximum flexibility: the inputs must be convertable to iterators (I: IntoIter), and the iterator’s items must be Borrow<Scalar> (or Borrow<Point>), to allow iterators returning either Scalars or &Scalars.

use curve25519_dalek_ng::constants;
use curve25519_dalek_ng::traits::MultiscalarMul;
use curve25519_dalek_ng::ristretto::RistrettoPoint;
use curve25519_dalek_ng::scalar::Scalar;

// Some scalars
let a = Scalar::from(87329482u64);
let b = Scalar::from(37264829u64);
let c = Scalar::from(98098098u64);

// Some points
let P = constants::RISTRETTO_BASEPOINT_POINT;
let Q = P + P;
let R = P + Q;

// A1 = a*P + b*Q + c*R
let abc = [a,b,c];
let A1 = RistrettoPoint::multiscalar_mul(&abc, &[P,Q,R]);
// Note: (&abc).into_iter(): Iterator<Item=&Scalar>

// A2 = (-a)*P + (-b)*Q + (-c)*R
let minus_abc = abc.iter().map(|x| -x);
let A2 = RistrettoPoint::multiscalar_mul(minus_abc, &[P,Q,R]);
// Note: minus_abc.into_iter(): Iterator<Item=Scalar>

assert_eq!(A1.compress(), (-A2).compress());

Implementors