Enum datafusion_expr::logical_plan::LogicalPlan
source · pub enum LogicalPlan {
Show 26 variants
Projection(Projection),
Filter(Filter),
Window(Window),
Aggregate(Aggregate),
Sort(Sort),
Join(Join),
CrossJoin(CrossJoin),
Repartition(Repartition),
Union(Union),
TableScan(TableScan),
EmptyRelation(EmptyRelation),
Subquery(Subquery),
SubqueryAlias(SubqueryAlias),
Limit(Limit),
Statement(Statement),
Values(Values),
Explain(Explain),
Analyze(Analyze),
Extension(Extension),
Distinct(Distinct),
Prepare(Prepare),
Dml(DmlStatement),
Ddl(DdlStatement),
Copy(CopyTo),
DescribeTable(DescribeTable),
Unnest(Unnest),
}
Expand description
A LogicalPlan represents the different types of relational operators (such as Projection, Filter, etc) and can be created by the SQL query planner and the DataFrame API.
A LogicalPlan represents transforming an input relation (table) to an output relation (table) with a (potentially) different schema. A plan represents a dataflow tree where data flows from leaves up to the root to produce the query result.
Variants§
Projection(Projection)
Evaluates an arbitrary list of expressions (essentially a SELECT with an expression list) on its input.
Filter(Filter)
Filters rows from its input that do not match an expression (essentially a WHERE clause with a predicate expression).
Semantically, <predicate>
is evaluated for each row of the
input; If the value of <predicate>
is true, the input row is
passed to the output. If the value of <predicate>
is false
(or null), the row is discarded.
Window(Window)
Windows input based on a set of window spec and window
function (e.g. SUM or RANK). This is used to implement SQL
window functions, and the OVER
clause.
Aggregate(Aggregate)
Aggregates its input based on a set of grouping and aggregate
expressions (e.g. SUM). This is used to implement SQL aggregates
and GROUP BY
.
Sort(Sort)
Sorts its input according to a list of sort expressions. This
is used to implement SQL ORDER BY
Join(Join)
Join two logical plans on one or more join columns.
This is used to implement SQL JOIN
CrossJoin(CrossJoin)
Apply Cross Join to two logical plans.
This is used to implement SQL CROSS JOIN
Repartition(Repartition)
Repartitions the input based on a partitioning scheme. This is used to add parallelism and is sometimes referred to as an “exchange” operator in other systems
Union(Union)
Union multiple inputs with the same schema into a single
output stream. This is used to implement SQL UNION [ALL]
and
INTERSECT [ALL]
.
TableScan(TableScan)
Produces rows from a TableSource
, used to implement SQL
FROM
tables or views.
EmptyRelation(EmptyRelation)
Produces no rows: An empty relation with an empty schema that
produces 0 or 1 row. This is used to implement SQL SELECT
that has no values in the FROM
clause.
Subquery(Subquery)
Produces the output of running another query. This is used to implement SQL subqueries
SubqueryAlias(SubqueryAlias)
Aliased relation provides, or changes, the name of a relation.
Limit(Limit)
Skip some number of rows, and then fetch some number of rows.
Statement(Statement)
A DataFusion Statement
such as SET VARIABLE
or START TRANSACTION
Values(Values)
Values expression. See
Postgres VALUES
documentation for more details. This is used to implement SQL such as
VALUES (1, 2), (3, 4)
Explain(Explain)
Produces a relation with string representations of
various parts of the plan. This is used to implement SQL EXPLAIN
.
Analyze(Analyze)
Runs the input, and prints annotated physical plan as a string
with execution metric. This is used to implement SQL
EXPLAIN ANALYZE
.
Extension(Extension)
Extension operator defined outside of DataFusion. This is used to extend DataFusion with custom relational operations that
Distinct(Distinct)
Remove duplicate rows from the input. This is used to
implement SQL SELECT DISTINCT ...
.
Prepare(Prepare)
Prepare a statement and find any bind parameters
(e.g. ?
). This is used to implement SQL-prepared statements.
Dml(DmlStatement)
Data Manipulaton Language (DML): Insert / Update / Delete
Ddl(DdlStatement)
Data Definition Language (DDL): CREATE / DROP TABLES / VIEWS / SCHEMAs
Copy(CopyTo)
COPY TO
for writing plan results to files
DescribeTable(DescribeTable)
Describe the schema of the table. This is used to implement the
SQL DESCRIBE
command from MySQL.
Unnest(Unnest)
Unnest a column that contains a nested list type such as an
ARRAY. This is used to implement SQL UNNEST
Implementations§
source§impl LogicalPlan
impl LogicalPlan
sourcepub fn schema(&self) -> &DFSchemaRef
pub fn schema(&self) -> &DFSchemaRef
Get a reference to the logical plan’s schema
sourcepub fn fallback_normalize_schemas(&self) -> Vec<&DFSchema>
pub fn fallback_normalize_schemas(&self) -> Vec<&DFSchema>
Used for normalizing columns, as the fallback schemas to the main schema of the plan.
sourcepub fn all_schemas(&self) -> Vec<&DFSchemaRef>
👎Deprecated since 20.0.0
pub fn all_schemas(&self) -> Vec<&DFSchemaRef>
Get all meaningful schemas of a plan and its children plan.
sourcepub fn explain_schema() -> SchemaRef
pub fn explain_schema() -> SchemaRef
Returns the (fixed) output schema for explain plans
sourcepub fn expressions(self: &LogicalPlan) -> Vec<Expr>
pub fn expressions(self: &LogicalPlan) -> Vec<Expr>
returns all expressions (non-recursively) in the current logical plan node. This does not include expressions in any children
sourcepub fn all_out_ref_exprs(self: &LogicalPlan) -> Vec<Expr>
pub fn all_out_ref_exprs(self: &LogicalPlan) -> Vec<Expr>
Returns all the out reference(correlated) expressions (recursively) in the current logical plan nodes and all its descendant nodes.
sourcepub fn inspect_expressions<F, E>(self: &LogicalPlan, f: F) -> Result<(), E>where
F: FnMut(&Expr) -> Result<(), E>,
pub fn inspect_expressions<F, E>(self: &LogicalPlan, f: F) -> Result<(), E>where F: FnMut(&Expr) -> Result<(), E>,
Calls f
on all expressions (non-recursively) in the current
logical plan node. This does not include expressions in any
children.
sourcepub fn inputs(&self) -> Vec<&LogicalPlan>
pub fn inputs(&self) -> Vec<&LogicalPlan>
returns all inputs of this LogicalPlan
node. Does not
include inputs to inputs, or subqueries.
sourcepub fn using_columns(&self) -> Result<Vec<HashSet<Column>>, DataFusionError>
pub fn using_columns(&self) -> Result<Vec<HashSet<Column>>, DataFusionError>
returns all Using
join columns in a logical plan
sourcepub fn head_output_expr(&self) -> Result<Option<Expr>>
pub fn head_output_expr(&self) -> Result<Option<Expr>>
returns the first output expression of this LogicalPlan
node.
sourcepub fn with_new_inputs(&self, inputs: &[LogicalPlan]) -> Result<LogicalPlan>
pub fn with_new_inputs(&self, inputs: &[LogicalPlan]) -> Result<LogicalPlan>
Returns a copy of this LogicalPlan
with the new inputs
sourcepub fn with_new_exprs(
&self,
expr: Vec<Expr>,
inputs: &[LogicalPlan]
) -> Result<LogicalPlan>
pub fn with_new_exprs( &self, expr: Vec<Expr>, inputs: &[LogicalPlan] ) -> Result<LogicalPlan>
Returns a new LogicalPlan
based on self
with inputs and
expressions replaced.
The exprs correspond to the same order of expressions returned
by Self::expressions
. This function is used by optimizers
to rewrite plans using the following pattern:
let new_inputs = optimize_children(..., plan, props);
// get the plans expressions to optimize
let exprs = plan.expressions();
// potentially rewrite plan expressions
let rewritten_exprs = rewrite_exprs(exprs);
// create new plan using rewritten_exprs in same position
let new_plan = plan.new_with_exprs(rewritten_exprs, new_inputs);
Note: sometimes Self::with_new_exprs
will use schema of
original plan, it will not change the scheam. Such as
Projection/Aggregate/Window
sourcepub fn with_param_values(
self,
param_values: Vec<ScalarValue>
) -> Result<LogicalPlan>
pub fn with_param_values( self, param_values: Vec<ScalarValue> ) -> Result<LogicalPlan>
Convert a prepared LogicalPlan
into its inner logical plan
with all params replaced with their corresponding values
sourcepub fn max_rows(self: &LogicalPlan) -> Option<usize>
pub fn max_rows(self: &LogicalPlan) -> Option<usize>
Returns the maximum number of rows that this plan can output, if known.
If None
, the plan can return any number of rows.
If Some(n)
then the plan can return at most n
rows but may return fewer.
source§impl LogicalPlan
impl LogicalPlan
sourcepub fn replace_params_with_values(
&self,
param_values: &[ScalarValue]
) -> Result<LogicalPlan>
pub fn replace_params_with_values( &self, param_values: &[ScalarValue] ) -> Result<LogicalPlan>
Return a logical plan with all placeholders/params (e.g $1 $2, …) replaced with corresponding values provided in the params_values
sourcepub fn get_parameter_types(
&self
) -> Result<HashMap<String, Option<DataType>>, DataFusionError>
pub fn get_parameter_types( &self ) -> Result<HashMap<String, Option<DataType>>, DataFusionError>
Walk the logical plan, find any PlaceHolder
tokens, and return a map of their IDs and DataTypes
source§impl LogicalPlan
impl LogicalPlan
sourcepub fn display_indent(&self) -> impl Display + '_
pub fn display_indent(&self) -> impl Display + '_
Return a format
able structure that produces a single line
per node. For example:
Projection: employee.id
Filter: employee.state Eq Utf8(\"CO\")\
CsvScan: employee projection=Some([0, 3])
use arrow::datatypes::{Field, Schema, DataType};
use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
]);
let plan = table_scan(Some("t1"), &schema, None).unwrap()
.filter(col("id").eq(lit(5))).unwrap()
.build().unwrap();
// Format using display_indent
let display_string = format!("{}", plan.display_indent());
assert_eq!("Filter: t1.id = Int32(5)\n TableScan: t1",
display_string);
sourcepub fn display_indent_schema(&self) -> impl Display + '_
pub fn display_indent_schema(&self) -> impl Display + '_
Return a format
able structure that produces a single line
per node that includes the output schema. For example:
Projection: employee.id [id:Int32]\
Filter: employee.state = Utf8(\"CO\") [id:Int32, state:Utf8]\
TableScan: employee projection=[0, 3] [id:Int32, state:Utf8]";
use arrow::datatypes::{Field, Schema, DataType};
use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
]);
let plan = table_scan(Some("t1"), &schema, None).unwrap()
.filter(col("id").eq(lit(5))).unwrap()
.build().unwrap();
// Format using display_indent_schema
let display_string = format!("{}", plan.display_indent_schema());
assert_eq!("Filter: t1.id = Int32(5) [id:Int32]\
\n TableScan: t1 [id:Int32]",
display_string);
sourcepub fn display_graphviz(&self) -> impl Display + '_
pub fn display_graphviz(&self) -> impl Display + '_
Return a format
able structure that produces lines meant for
graphical display using the DOT
language. This format can be
visualized using software from
graphviz
This currently produces two graphs – one with the basic structure, and one with additional details such as schema.
use arrow::datatypes::{Field, Schema, DataType};
use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
]);
let plan = table_scan(Some("t1"), &schema, None).unwrap()
.filter(col("id").eq(lit(5))).unwrap()
.build().unwrap();
// Format using display_graphviz
let graphviz_string = format!("{}", plan.display_graphviz());
If graphviz string is saved to a file such as /tmp/example.dot
, the following
commands can be used to render it as a pdf:
dot -Tpdf < /tmp/example.dot > /tmp/example.pdf
sourcepub fn display(&self) -> impl Display + '_
pub fn display(&self) -> impl Display + '_
Return a format
able structure with the a human readable
description of this LogicalPlan node per node, not including
children. For example:
Projection: id
use arrow::datatypes::{Field, Schema, DataType};
use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
]);
let plan = table_scan(Some("t1"), &schema, None).unwrap()
.build().unwrap();
// Format using display
let display_string = format!("{}", plan.display());
assert_eq!("TableScan: t1", display_string);
Trait Implementations§
source§impl Clone for LogicalPlan
impl Clone for LogicalPlan
source§fn clone(&self) -> LogicalPlan
fn clone(&self) -> LogicalPlan
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for LogicalPlan
impl Debug for LogicalPlan
source§impl Hash for LogicalPlan
impl Hash for LogicalPlan
source§impl PartialEq<LogicalPlan> for LogicalPlan
impl PartialEq<LogicalPlan> for LogicalPlan
source§fn eq(&self, other: &LogicalPlan) -> bool
fn eq(&self, other: &LogicalPlan) -> bool
self
and other
values to be equal, and is used
by ==
.source§impl ToStringifiedPlan for LogicalPlan
impl ToStringifiedPlan for LogicalPlan
source§fn to_stringified(&self, plan_type: PlanType) -> StringifiedPlan
fn to_stringified(&self, plan_type: PlanType) -> StringifiedPlan
source§impl TreeNode for LogicalPlan
impl TreeNode for LogicalPlan
source§fn visit<V: TreeNodeVisitor<N = Self>>(
&self,
visitor: &mut V
) -> Result<VisitRecursion>
fn visit<V: TreeNodeVisitor<N = Self>>( &self, visitor: &mut V ) -> Result<VisitRecursion>
To use, define a struct that implements the trait TreeNodeVisitor
and then invoke
LogicalPlan::visit
.
For example, for a logical plan like:
Projection: id
Filter: state Eq Utf8(\"CO\")\
CsvScan: employee.csv projection=Some([0, 3])";
The sequence of visit operations would be:
visitor.pre_visit(Projection)
visitor.pre_visit(Filter)
visitor.pre_visit(CsvScan)
visitor.post_visit(CsvScan)
visitor.post_visit(Filter)
visitor.post_visit(Projection)
source§fn apply<F>(&self, op: &mut F) -> Result<VisitRecursion>where
F: FnMut(&Self) -> Result<VisitRecursion>,
fn apply<F>(&self, op: &mut F) -> Result<VisitRecursion>where F: FnMut(&Self) -> Result<VisitRecursion>,
source§fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>where
F: FnMut(&Self) -> Result<VisitRecursion>,
fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>where F: FnMut(&Self) -> Result<VisitRecursion>,
F
to the node’s childrensource§fn map_children<F>(self, transform: F) -> Result<Self>where
F: FnMut(Self) -> Result<Self>,
fn map_children<F>(self, transform: F) -> Result<Self>where F: FnMut(Self) -> Result<Self>,
F
to the node’s children, the transform F
might have a direction(Preorder or Postorder)source§fn transform<F>(self, op: &F) -> Result<Self, DataFusionError>where
F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
fn transform<F>(self, op: &F) -> Result<Self, DataFusionError>where F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
op
to the node tree.
When op
does not apply to a given node, it is left unchanged.
The default tree traversal direction is transform_up(Postorder Traversal).source§fn transform_down<F>(self, op: &F) -> Result<Self, DataFusionError>where
F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
fn transform_down<F>(self, op: &F) -> Result<Self, DataFusionError>where F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
op
does not apply to a given node, it is left unchanged.source§fn transform_up<F>(self, op: &F) -> Result<Self, DataFusionError>where
F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
fn transform_up<F>(self, op: &F) -> Result<Self, DataFusionError>where F: Fn(Self) -> Result<Transformed<Self>, DataFusionError>,
op
does not apply to a given node, it is left unchanged.source§fn rewrite<R>(self, rewriter: &mut R) -> Result<Self, DataFusionError>where
R: TreeNodeRewriter<N = Self>,
fn rewrite<R>(self, rewriter: &mut R) -> Result<Self, DataFusionError>where R: TreeNodeRewriter<N = Self>,
impl Eq for LogicalPlan
impl StructuralEq for LogicalPlan
impl StructuralPartialEq for LogicalPlan
Auto Trait Implementations§
impl !RefUnwindSafe for LogicalPlan
impl Send for LogicalPlan
impl Sync for LogicalPlan
impl Unpin for LogicalPlan
impl !UnwindSafe for LogicalPlan
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.