1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Query optimizer traits

use crate::common_subexpr_eliminate::CommonSubexprEliminate;
use crate::decorrelate_predicate_subquery::DecorrelatePredicateSubquery;
use crate::eliminate_cross_join::EliminateCrossJoin;
use crate::eliminate_duplicated_expr::EliminateDuplicatedExpr;
use crate::eliminate_filter::EliminateFilter;
use crate::eliminate_join::EliminateJoin;
use crate::eliminate_limit::EliminateLimit;
use crate::eliminate_outer_join::EliminateOuterJoin;
use crate::eliminate_project::EliminateProjection;
use crate::extract_equijoin_predicate::ExtractEquijoinPredicate;
use crate::filter_null_join_keys::FilterNullJoinKeys;
use crate::merge_projection::MergeProjection;
use crate::plan_signature::LogicalPlanSignature;
use crate::propagate_empty_relation::PropagateEmptyRelation;
use crate::push_down_filter::PushDownFilter;
use crate::push_down_limit::PushDownLimit;
use crate::push_down_projection::PushDownProjection;
use crate::replace_distinct_aggregate::ReplaceDistinctWithAggregate;
use crate::rewrite_disjunctive_predicate::RewriteDisjunctivePredicate;
use crate::scalar_subquery_to_join::ScalarSubqueryToJoin;
use crate::simplify_expressions::SimplifyExpressions;
use crate::single_distinct_to_groupby::SingleDistinctToGroupBy;
use crate::unwrap_cast_in_comparison::UnwrapCastInComparison;
use crate::utils::log_plan;
use chrono::{DateTime, Utc};
use datafusion_common::alias::AliasGenerator;
use datafusion_common::config::ConfigOptions;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::logical_plan::LogicalPlan;
use log::{debug, warn};
use std::collections::HashSet;
use std::sync::Arc;
use std::time::Instant;

/// `OptimizerRule` transforms one [`LogicalPlan`] into another which
/// computes the same results, but in a potentially more efficient
/// way. If there are no suitable transformations for the input plan,
/// the optimizer can simply return it as is.
pub trait OptimizerRule {
    /// Try and rewrite `plan` to an optimized form, returning None if the plan cannot be
    /// optimized by this rule.
    fn try_optimize(
        &self,
        plan: &LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Option<LogicalPlan>>;

    /// A human readable name for this optimizer rule
    fn name(&self) -> &str;

    /// How should the rule be applied by the optimizer? See comments on [`ApplyOrder`] for details.
    ///
    /// If a rule use default None, it should traverse recursively plan inside itself
    fn apply_order(&self) -> Option<ApplyOrder> {
        None
    }
}

/// Options to control the DataFusion Optimizer.
pub trait OptimizerConfig {
    /// Return the time at which the query execution started. This
    /// time is used as the value for now()
    fn query_execution_start_time(&self) -> DateTime<Utc>;

    /// Return alias generator used to generate unique aliases for subqueries
    fn alias_generator(&self) -> Arc<AliasGenerator>;

    fn options(&self) -> &ConfigOptions;
}

/// A standalone [`OptimizerConfig`] that can be used independently
/// of DataFusion's config management
#[derive(Debug)]
pub struct OptimizerContext {
    /// Query execution start time that can be used to rewrite
    /// expressions such as `now()` to use a literal value instead
    query_execution_start_time: DateTime<Utc>,

    /// Alias generator used to generate unique aliases for subqueries
    alias_generator: Arc<AliasGenerator>,

    options: ConfigOptions,
}

impl OptimizerContext {
    /// Create optimizer config
    pub fn new() -> Self {
        let mut options = ConfigOptions::default();
        options.optimizer.filter_null_join_keys = true;

        Self {
            query_execution_start_time: Utc::now(),
            alias_generator: Arc::new(AliasGenerator::new()),
            options,
        }
    }

    /// Specify whether to enable the filter_null_keys rule
    pub fn filter_null_keys(mut self, filter_null_keys: bool) -> Self {
        self.options.optimizer.filter_null_join_keys = filter_null_keys;
        self
    }

    /// Specify whether the optimizer should skip rules that produce
    /// errors, or fail the query
    pub fn with_query_execution_start_time(
        mut self,
        query_execution_tart_time: DateTime<Utc>,
    ) -> Self {
        self.query_execution_start_time = query_execution_tart_time;
        self
    }

    /// Specify whether the optimizer should skip rules that produce
    /// errors, or fail the query
    pub fn with_skip_failing_rules(mut self, b: bool) -> Self {
        self.options.optimizer.skip_failed_rules = b;
        self
    }

    /// Specify how many times to attempt to optimize the plan
    pub fn with_max_passes(mut self, v: u8) -> Self {
        self.options.optimizer.max_passes = v as usize;
        self
    }
}

impl Default for OptimizerContext {
    /// Create optimizer config
    fn default() -> Self {
        Self::new()
    }
}

impl OptimizerConfig for OptimizerContext {
    fn query_execution_start_time(&self) -> DateTime<Utc> {
        self.query_execution_start_time
    }

    fn alias_generator(&self) -> Arc<AliasGenerator> {
        self.alias_generator.clone()
    }

    fn options(&self) -> &ConfigOptions {
        &self.options
    }
}

/// A rule-based optimizer.
#[derive(Clone)]
pub struct Optimizer {
    /// All optimizer rules to apply
    pub rules: Vec<Arc<dyn OptimizerRule + Send + Sync>>,
}

/// If a rule is with `ApplyOrder`, it means the optimizer will derive to handle children instead of
/// recursively handling in rule.
/// We just need handle a subtree pattern itself.
///
/// Notice: **sometime** result after optimize still can be optimized, we need apply again.
///
/// Usage Example: Merge Limit (subtree pattern is: Limit-Limit)
/// ```rust
/// use datafusion_expr::{Limit, LogicalPlan, LogicalPlanBuilder};
/// use datafusion_common::Result;
/// fn merge_limit(parent: &Limit, child: &Limit) -> LogicalPlan {
///     // just for run
///     return parent.input.as_ref().clone();
/// }
/// fn try_optimize(plan: &LogicalPlan) -> Result<Option<LogicalPlan>> {
///     match plan {
///         LogicalPlan::Limit(limit) => match limit.input.as_ref() {
///             LogicalPlan::Limit(child_limit) => {
///                 // merge limit ...
///                 let optimized_plan = merge_limit(limit, child_limit);
///                 // due to optimized_plan may be optimized again,
///                 // for example: plan is Limit-Limit-Limit
///                 Ok(Some(
///                     try_optimize(&optimized_plan)?
///                         .unwrap_or_else(|| optimized_plan.clone()),
///                 ))
///             }
///             _ => Ok(None),
///         },
///         _ => Ok(None),
///     }
/// }
/// ```
pub enum ApplyOrder {
    TopDown,
    BottomUp,
}

impl Default for Optimizer {
    fn default() -> Self {
        Self::new()
    }
}

impl Optimizer {
    /// Create a new optimizer using the recommended list of rules
    pub fn new() -> Self {
        let rules: Vec<Arc<dyn OptimizerRule + Sync + Send>> = vec![
            Arc::new(SimplifyExpressions::new()),
            Arc::new(UnwrapCastInComparison::new()),
            Arc::new(ReplaceDistinctWithAggregate::new()),
            Arc::new(EliminateJoin::new()),
            Arc::new(DecorrelatePredicateSubquery::new()),
            Arc::new(ScalarSubqueryToJoin::new()),
            Arc::new(ExtractEquijoinPredicate::new()),
            // simplify expressions does not simplify expressions in subqueries, so we
            // run it again after running the optimizations that potentially converted
            // subqueries to joins
            Arc::new(SimplifyExpressions::new()),
            Arc::new(MergeProjection::new()),
            Arc::new(RewriteDisjunctivePredicate::new()),
            Arc::new(EliminateDuplicatedExpr::new()),
            Arc::new(EliminateFilter::new()),
            Arc::new(EliminateCrossJoin::new()),
            Arc::new(CommonSubexprEliminate::new()),
            Arc::new(EliminateLimit::new()),
            Arc::new(PropagateEmptyRelation::new()),
            Arc::new(FilterNullJoinKeys::default()),
            Arc::new(EliminateOuterJoin::new()),
            // Filters can't be pushed down past Limits, we should do PushDownFilter after PushDownLimit
            Arc::new(PushDownLimit::new()),
            Arc::new(PushDownFilter::new()),
            Arc::new(SingleDistinctToGroupBy::new()),
            // The previous optimizations added expressions and projections,
            // that might benefit from the following rules
            Arc::new(SimplifyExpressions::new()),
            Arc::new(UnwrapCastInComparison::new()),
            Arc::new(CommonSubexprEliminate::new()),
            Arc::new(PushDownProjection::new()),
            Arc::new(EliminateProjection::new()),
            // PushDownProjection can pushdown Projections through Limits, do PushDownLimit again.
            Arc::new(PushDownLimit::new()),
        ];

        Self::with_rules(rules)
    }

    /// Create a new optimizer with the given rules
    pub fn with_rules(rules: Vec<Arc<dyn OptimizerRule + Send + Sync>>) -> Self {
        Self { rules }
    }

    /// Optimizes the logical plan by applying optimizer rules, and
    /// invoking observer function after each call
    pub fn optimize<F>(
        &self,
        plan: &LogicalPlan,
        config: &dyn OptimizerConfig,
        mut observer: F,
    ) -> Result<LogicalPlan>
    where
        F: FnMut(&LogicalPlan, &dyn OptimizerRule),
    {
        let options = config.options();
        let mut new_plan = plan.clone();

        let start_time = Instant::now();

        let mut previous_plans = HashSet::with_capacity(16);
        previous_plans.insert(LogicalPlanSignature::new(&new_plan));

        let mut i = 0;
        while i < options.optimizer.max_passes {
            log_plan(&format!("Optimizer input (pass {i})"), &new_plan);

            for rule in &self.rules {
                let result =
                    self.optimize_recursively(rule, &new_plan, config)
                        .and_then(|plan| {
                            if let Some(plan) = &plan {
                                assert_schema_is_the_same(rule.name(), &new_plan, plan)?;
                            }
                            Ok(plan)
                        });
                match result {
                    Ok(Some(plan)) => {
                        new_plan = plan;
                        observer(&new_plan, rule.as_ref());
                        log_plan(rule.name(), &new_plan);
                    }
                    Ok(None) => {
                        observer(&new_plan, rule.as_ref());
                        debug!(
                            "Plan unchanged by optimizer rule '{}' (pass {})",
                            rule.name(),
                            i
                        );
                    }
                    Err(e) => {
                        if options.optimizer.skip_failed_rules {
                            // Note to future readers: if you see this warning it signals a
                            // bug in the DataFusion optimizer. Please consider filing a ticket
                            // https://github.com/apache/arrow-datafusion
                            warn!(
                            "Skipping optimizer rule '{}' due to unexpected error: {}",
                            rule.name(),
                            e
                        );
                        } else {
                            return Err(DataFusionError::Context(
                                format!("Optimizer rule '{}' failed", rule.name(),),
                                Box::new(e),
                            ));
                        }
                    }
                }
            }
            log_plan(&format!("Optimized plan (pass {i})"), &new_plan);

            // HashSet::insert returns, whether the value was newly inserted.
            let plan_is_fresh =
                previous_plans.insert(LogicalPlanSignature::new(&new_plan));
            if !plan_is_fresh {
                // plan did not change, so no need to continue trying to optimize
                debug!("optimizer pass {} did not make changes", i);
                break;
            }
            i += 1;
        }
        log_plan("Final optimized plan", &new_plan);
        debug!("Optimizer took {} ms", start_time.elapsed().as_millis());
        Ok(new_plan)
    }

    fn optimize_node(
        &self,
        rule: &Arc<dyn OptimizerRule + Send + Sync>,
        plan: &LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Option<LogicalPlan>> {
        // TODO: future feature: We can do Batch optimize
        rule.try_optimize(plan, config)
    }

    fn optimize_inputs(
        &self,
        rule: &Arc<dyn OptimizerRule + Send + Sync>,
        plan: &LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Option<LogicalPlan>> {
        let inputs = plan.inputs();
        let result = inputs
            .iter()
            .map(|sub_plan| self.optimize_recursively(rule, sub_plan, config))
            .collect::<Result<Vec<_>>>()?;
        if result.is_empty() || result.iter().all(|o| o.is_none()) {
            return Ok(None);
        }

        let new_inputs = result
            .into_iter()
            .enumerate()
            .map(|(i, o)| match o {
                Some(plan) => plan,
                None => (*(inputs.get(i).unwrap())).clone(),
            })
            .collect::<Vec<_>>();

        Ok(Some(plan.with_new_inputs(&new_inputs)?))
    }

    /// Use a rule to optimize the whole plan.
    /// If the rule with `ApplyOrder`, we don't need to recursively handle children in rule.
    pub fn optimize_recursively(
        &self,
        rule: &Arc<dyn OptimizerRule + Send + Sync>,
        plan: &LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Option<LogicalPlan>> {
        match rule.apply_order() {
            Some(order) => match order {
                ApplyOrder::TopDown => {
                    let optimize_self_opt = self.optimize_node(rule, plan, config)?;
                    let optimize_inputs_opt = match &optimize_self_opt {
                        Some(optimized_plan) => {
                            self.optimize_inputs(rule, optimized_plan, config)?
                        }
                        _ => self.optimize_inputs(rule, plan, config)?,
                    };
                    Ok(optimize_inputs_opt.or(optimize_self_opt))
                }
                ApplyOrder::BottomUp => {
                    let optimize_inputs_opt = self.optimize_inputs(rule, plan, config)?;
                    let optimize_self_opt = match &optimize_inputs_opt {
                        Some(optimized_plan) => {
                            self.optimize_node(rule, optimized_plan, config)?
                        }
                        _ => self.optimize_node(rule, plan, config)?,
                    };
                    Ok(optimize_self_opt.or(optimize_inputs_opt))
                }
            },
            _ => rule.try_optimize(plan, config),
        }
    }
}

/// Returns an error if plans have different schemas.
///
/// It ignores metadata and nullability.
fn assert_schema_is_the_same(
    rule_name: &str,
    prev_plan: &LogicalPlan,
    new_plan: &LogicalPlan,
) -> Result<()> {
    let equivalent = new_plan
        .schema()
        .equivalent_names_and_types(prev_plan.schema());

    if !equivalent {
        let e = DataFusionError::Internal(format!(
            "Failed due to generate a different schema, original schema: {:?}, new schema: {:?}",
            prev_plan.schema(),
            new_plan.schema()
        ));
        Err(DataFusionError::Context(
            String::from(rule_name),
            Box::new(e),
        ))
    } else {
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::optimizer::Optimizer;
    use crate::test::test_table_scan;
    use crate::{OptimizerConfig, OptimizerContext, OptimizerRule};
    use datafusion_common::{
        plan_err, DFField, DFSchema, DFSchemaRef, DataFusionError, Result,
    };
    use datafusion_expr::logical_plan::EmptyRelation;
    use datafusion_expr::{col, lit, LogicalPlan, LogicalPlanBuilder, Projection};
    use std::sync::{Arc, Mutex};

    use super::ApplyOrder;

    #[test]
    fn skip_failing_rule() {
        let opt = Optimizer::with_rules(vec![Arc::new(BadRule {})]);
        let config = OptimizerContext::new().with_skip_failing_rules(true);
        let plan = LogicalPlan::EmptyRelation(EmptyRelation {
            produce_one_row: false,
            schema: Arc::new(DFSchema::empty()),
        });
        opt.optimize(&plan, &config, &observe).unwrap();
    }

    #[test]
    fn no_skip_failing_rule() {
        let opt = Optimizer::with_rules(vec![Arc::new(BadRule {})]);
        let config = OptimizerContext::new().with_skip_failing_rules(false);
        let plan = LogicalPlan::EmptyRelation(EmptyRelation {
            produce_one_row: false,
            schema: Arc::new(DFSchema::empty()),
        });
        let err = opt.optimize(&plan, &config, &observe).unwrap_err();
        assert_eq!(
            "Optimizer rule 'bad rule' failed\ncaused by\n\
            Error during planning: rule failed",
            err.strip_backtrace()
        );
    }

    #[test]
    fn generate_different_schema() {
        let opt = Optimizer::with_rules(vec![Arc::new(GetTableScanRule {})]);
        let config = OptimizerContext::new().with_skip_failing_rules(false);
        let plan = LogicalPlan::EmptyRelation(EmptyRelation {
            produce_one_row: false,
            schema: Arc::new(DFSchema::empty()),
        });
        let err = opt.optimize(&plan, &config, &observe).unwrap_err();
        assert_eq!(
            "Optimizer rule 'get table_scan rule' failed\ncaused by\nget table_scan rule\ncaused by\n\
             Internal error: Failed due to generate a different schema, \
             original schema: DFSchema { fields: [], metadata: {}, functional_dependencies: FunctionalDependencies { deps: [] } }, \
             new schema: DFSchema { fields: [\
             DFField { qualifier: Some(Bare { table: \"test\" }), field: Field { name: \"a\", data_type: UInt32, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} } }, \
             DFField { qualifier: Some(Bare { table: \"test\" }), field: Field { name: \"b\", data_type: UInt32, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} } }, \
             DFField { qualifier: Some(Bare { table: \"test\" }), field: Field { name: \"c\", data_type: UInt32, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} } }], \
             metadata: {}, functional_dependencies: FunctionalDependencies { deps: [] } }.\
             \nThis was likely caused by a bug in DataFusion's code \
             and we would welcome that you file an bug report in our issue tracker",
            err.strip_backtrace()
        );
    }

    #[test]
    fn skip_generate_different_schema() {
        let opt = Optimizer::with_rules(vec![Arc::new(GetTableScanRule {})]);
        let config = OptimizerContext::new().with_skip_failing_rules(true);
        let plan = LogicalPlan::EmptyRelation(EmptyRelation {
            produce_one_row: false,
            schema: Arc::new(DFSchema::empty()),
        });
        opt.optimize(&plan, &config, &observe).unwrap();
    }

    #[test]
    fn generate_same_schema_different_metadata() -> Result<()> {
        // if the plan creates more metadata than previously (because
        // some wrapping functions are removed, etc) do not error
        let opt = Optimizer::with_rules(vec![Arc::new(GetTableScanRule {})]);
        let config = OptimizerContext::new().with_skip_failing_rules(false);

        let input = Arc::new(test_table_scan()?);
        let input_schema = input.schema().clone();

        let plan = LogicalPlan::Projection(Projection::try_new_with_schema(
            vec![col("a"), col("b"), col("c")],
            input,
            add_metadata_to_fields(input_schema.as_ref()),
        )?);

        // optimizing should be ok, but the schema will have changed  (no metadata)
        assert_ne!(plan.schema().as_ref(), input_schema.as_ref());
        let optimized_plan = opt.optimize(&plan, &config, &observe)?;
        // metadata was removed
        assert_eq!(optimized_plan.schema().as_ref(), input_schema.as_ref());
        Ok(())
    }

    #[test]
    fn optimizer_detects_plan_equal_to_the_initial() -> Result<()> {
        // Run a goofy optimizer, which rotates projection columns
        // [1, 2, 3] -> [2, 3, 1] -> [3, 1, 2] -> [1, 2, 3]

        let opt = Optimizer::with_rules(vec![Arc::new(RotateProjectionRule::new(false))]);
        let config = OptimizerContext::new().with_max_passes(16);

        let initial_plan = LogicalPlanBuilder::empty(false)
            .project([lit(1), lit(2), lit(3)])?
            .project([lit(100)])? // to not trigger changed schema error
            .build()?;

        let mut plans: Vec<LogicalPlan> = Vec::new();
        let final_plan =
            opt.optimize(&initial_plan, &config, |p, _| plans.push(p.clone()))?;

        // initial_plan is not observed, so we have 3 plans
        assert_eq!(3, plans.len());

        // we got again the initial_plan with [1, 2, 3]
        assert_eq!(initial_plan, final_plan);

        Ok(())
    }

    #[test]
    fn optimizer_detects_plan_equal_to_a_non_initial() -> Result<()> {
        // Run a goofy optimizer, which reverses and rotates projection columns
        // [1, 2, 3] -> [3, 2, 1] -> [2, 1, 3] -> [1, 3, 2] -> [3, 2, 1]

        let opt = Optimizer::with_rules(vec![Arc::new(RotateProjectionRule::new(true))]);
        let config = OptimizerContext::new().with_max_passes(16);

        let initial_plan = LogicalPlanBuilder::empty(false)
            .project([lit(1), lit(2), lit(3)])?
            .project([lit(100)])? // to not trigger changed schema error
            .build()?;

        let mut plans: Vec<LogicalPlan> = Vec::new();
        let final_plan =
            opt.optimize(&initial_plan, &config, |p, _| plans.push(p.clone()))?;

        // initial_plan is not observed, so we have 4 plans
        assert_eq!(4, plans.len());

        // we got again the plan with [3, 2, 1]
        assert_eq!(plans[0], final_plan);

        Ok(())
    }

    fn add_metadata_to_fields(schema: &DFSchema) -> DFSchemaRef {
        let new_fields = schema
            .fields()
            .iter()
            .enumerate()
            .map(|(i, f)| {
                let metadata =
                    [("key".into(), format!("value {i}"))].into_iter().collect();

                let new_arrow_field = f.field().as_ref().clone().with_metadata(metadata);
                if let Some(qualifier) = f.qualifier() {
                    DFField::from_qualified(qualifier.clone(), new_arrow_field)
                } else {
                    DFField::from(new_arrow_field)
                }
            })
            .collect::<Vec<_>>();

        let new_metadata = schema.metadata().clone();
        Arc::new(DFSchema::new_with_metadata(new_fields, new_metadata).unwrap())
    }

    fn observe(_plan: &LogicalPlan, _rule: &dyn OptimizerRule) {}

    struct BadRule {}

    impl OptimizerRule for BadRule {
        fn try_optimize(
            &self,
            _: &LogicalPlan,
            _: &dyn OptimizerConfig,
        ) -> Result<Option<LogicalPlan>> {
            plan_err!("rule failed")
        }

        fn name(&self) -> &str {
            "bad rule"
        }
    }

    /// Replaces whatever plan with a single table scan
    struct GetTableScanRule {}

    impl OptimizerRule for GetTableScanRule {
        fn try_optimize(
            &self,
            _: &LogicalPlan,
            _: &dyn OptimizerConfig,
        ) -> Result<Option<LogicalPlan>> {
            let table_scan = test_table_scan()?;
            Ok(Some(LogicalPlanBuilder::from(table_scan).build()?))
        }

        fn name(&self) -> &str {
            "get table_scan rule"
        }
    }

    /// A goofy rule doing rotation of columns in all projections.
    ///
    /// Useful to test cycle detection.
    struct RotateProjectionRule {
        // reverse exprs instead of rotating on the first pass
        reverse_on_first_pass: Mutex<bool>,
    }

    impl RotateProjectionRule {
        fn new(reverse_on_first_pass: bool) -> Self {
            Self {
                reverse_on_first_pass: Mutex::new(reverse_on_first_pass),
            }
        }
    }

    impl OptimizerRule for RotateProjectionRule {
        fn try_optimize(
            &self,
            plan: &LogicalPlan,
            _: &dyn OptimizerConfig,
        ) -> Result<Option<LogicalPlan>> {
            let projection = match plan {
                LogicalPlan::Projection(p) if p.expr.len() >= 2 => p,
                _ => return Ok(None),
            };

            let mut exprs = projection.expr.clone();

            let mut reverse = self.reverse_on_first_pass.lock().unwrap();
            if *reverse {
                exprs.reverse();
                *reverse = false;
            } else {
                exprs.rotate_left(1);
            }

            Ok(Some(LogicalPlan::Projection(Projection::try_new(
                exprs,
                projection.input.clone(),
            )?)))
        }

        fn apply_order(&self) -> Option<ApplyOrder> {
            Some(ApplyOrder::TopDown)
        }

        fn name(&self) -> &str {
            "rotate_projection"
        }
    }
}