1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::optimizer::ApplyOrder;
use crate::{OptimizerConfig, OptimizerRule};
use datafusion_common::Result;
use datafusion_expr::expr::BinaryExpr;
use datafusion_expr::logical_plan::Filter;
use datafusion_expr::{Expr, LogicalPlan, Operator};
/// Optimizer pass that rewrites predicates of the form
///
/// ```text
/// (A = B AND <expr1>) OR (A = B AND <expr2>) OR ... (A = B AND <exprN>)
/// ```
///
/// Into
/// ```text
/// (A = B) AND (<expr1> OR <expr2> OR ... <exprN> )
/// ```
///
/// Predicates connected by `OR` typically not able to be broken down
/// and distributed as well as those connected by `AND`.
///
/// The idea is to rewrite predicates into `good_predicate1 AND
/// good_predicate2 AND ...` where `good_predicate` means the
/// predicate has special support in the execution engine.
///
/// Equality join predicates (e.g. `col1 = col2`), or single column
/// expressions (e.g. `col = 5`) are examples of predicates with
/// special support.
///
/// # TPCH Q19
///
/// This optimization is admittedly somewhat of a niche usecase. It's
/// main use is that it appears in TPCH Q19 and is required to avoid a
/// CROSS JOIN.
///
/// Specifically, Q19 has a WHERE clause that looks like
///
/// ```sql
/// where
/// p_partkey = l_partkey
/// and l_shipmode in (‘AIR’, ‘AIR REG’)
/// and l_shipinstruct = ‘DELIVER IN PERSON’
/// and (
/// (
/// and p_brand = ‘[BRAND1]’
/// and p_container in ( ‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
/// and l_quantity >= [QUANTITY1] and l_quantity <= [QUANTITY1] + 10
/// and p_size between 1 and 5
/// )
/// or
/// (
/// and p_brand = ‘[BRAND2]’
/// and p_container in (‘MED BAG’, ‘MED BOX’, ‘MED PKG’, ‘MED PACK’)
/// and l_quantity >= [QUANTITY2] and l_quantity <= [QUANTITY2] + 10
/// and p_size between 1 and 10
/// )
/// or
/// (
/// and p_brand = ‘[BRAND3]’
/// and p_container in ( ‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
/// and l_quantity >= [QUANTITY3] and l_quantity <= [QUANTITY3] + 10
/// and p_size between 1 and 15
/// )
/// )
/// ```
///
/// Naively planning this query will result in a CROSS join with that
/// single large OR filter. However, rewriting it using the rewrite in
/// this pass results in a proper join predicate, `p_partkey = l_partkey`:
///
/// ```sql
/// where
/// p_partkey = l_partkey
/// and l_shipmode in (‘AIR’, ‘AIR REG’)
/// and l_shipinstruct = ‘DELIVER IN PERSON’
/// and (
/// (
/// and p_brand = ‘[BRAND1]’
/// and p_container in ( ‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
/// and l_quantity >= [QUANTITY1] and l_quantity <= [QUANTITY1] + 10
/// and p_size between 1 and 5
/// )
/// or
/// (
/// and p_brand = ‘[BRAND2]’
/// and p_container in (‘MED BAG’, ‘MED BOX’, ‘MED PKG’, ‘MED PACK’)
/// and l_quantity >= [QUANTITY2] and l_quantity <= [QUANTITY2] + 10
/// and p_size between 1 and 10
/// )
/// or
/// (
/// and p_brand = ‘[BRAND3]’
/// and p_container in ( ‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
/// and l_quantity >= [QUANTITY3] and l_quantity <= [QUANTITY3] + 10
/// and p_size between 1 and 15
/// )
/// )
/// ```
///
#[derive(Default)]
pub struct RewriteDisjunctivePredicate;
impl RewriteDisjunctivePredicate {
pub fn new() -> Self {
Self
}
}
impl OptimizerRule for RewriteDisjunctivePredicate {
fn try_optimize(
&self,
plan: &LogicalPlan,
_config: &dyn OptimizerConfig,
) -> Result<Option<LogicalPlan>> {
match plan {
LogicalPlan::Filter(filter) => {
let predicate = predicate(&filter.predicate)?;
let rewritten_predicate = rewrite_predicate(predicate);
let rewritten_expr = normalize_predicate(rewritten_predicate);
Ok(Some(LogicalPlan::Filter(Filter::try_new(
rewritten_expr,
filter.input.clone(),
)?)))
}
_ => Ok(None),
}
}
fn name(&self) -> &str {
"rewrite_disjunctive_predicate"
}
fn apply_order(&self) -> Option<ApplyOrder> {
Some(ApplyOrder::TopDown)
}
}
#[derive(Clone, PartialEq, Debug)]
enum Predicate {
And { args: Vec<Predicate> },
Or { args: Vec<Predicate> },
Other { expr: Box<Expr> },
}
fn predicate(expr: &Expr) -> Result<Predicate> {
match expr {
Expr::BinaryExpr(BinaryExpr { left, op, right }) => match op {
Operator::And => {
let args = vec![predicate(left)?, predicate(right)?];
Ok(Predicate::And { args })
}
Operator::Or => {
let args = vec![predicate(left)?, predicate(right)?];
Ok(Predicate::Or { args })
}
_ => Ok(Predicate::Other {
expr: Box::new(Expr::BinaryExpr(BinaryExpr::new(
left.clone(),
*op,
right.clone(),
))),
}),
},
_ => Ok(Predicate::Other {
expr: Box::new(expr.clone()),
}),
}
}
fn normalize_predicate(predicate: Predicate) -> Expr {
match predicate {
Predicate::And { args } => {
assert!(args.len() >= 2);
args.into_iter()
.map(normalize_predicate)
.reduce(Expr::and)
.expect("had more than one arg")
}
Predicate::Or { args } => {
assert!(args.len() >= 2);
args.into_iter()
.map(normalize_predicate)
.reduce(Expr::or)
.expect("had more than one arg")
}
Predicate::Other { expr } => *expr,
}
}
fn rewrite_predicate(predicate: Predicate) -> Predicate {
match predicate {
Predicate::And { args } => {
let mut rewritten_args = Vec::with_capacity(args.len());
for arg in args.iter() {
rewritten_args.push(rewrite_predicate(arg.clone()));
}
rewritten_args = flatten_and_predicates(rewritten_args);
Predicate::And {
args: rewritten_args,
}
}
Predicate::Or { args } => {
let mut rewritten_args = vec![];
for arg in args.iter() {
rewritten_args.push(rewrite_predicate(arg.clone()));
}
rewritten_args = flatten_or_predicates(rewritten_args);
delete_duplicate_predicates(&rewritten_args)
}
Predicate::Other { expr } => Predicate::Other {
expr: Box::new(*expr),
},
}
}
fn flatten_and_predicates(
and_predicates: impl IntoIterator<Item = Predicate>,
) -> Vec<Predicate> {
let mut flattened_predicates = vec![];
for predicate in and_predicates {
match predicate {
Predicate::And { args } => {
flattened_predicates
.extend_from_slice(flatten_and_predicates(args).as_slice());
}
_ => {
flattened_predicates.push(predicate);
}
}
}
flattened_predicates
}
fn flatten_or_predicates(
or_predicates: impl IntoIterator<Item = Predicate>,
) -> Vec<Predicate> {
let mut flattened_predicates = vec![];
for predicate in or_predicates {
match predicate {
Predicate::Or { args } => {
flattened_predicates
.extend_from_slice(flatten_or_predicates(args).as_slice());
}
_ => {
flattened_predicates.push(predicate);
}
}
}
flattened_predicates
}
fn delete_duplicate_predicates(or_predicates: &[Predicate]) -> Predicate {
let mut shortest_exprs: Vec<Predicate> = vec![];
let mut shortest_exprs_len = 0;
// choose the shortest AND predicate
for or_predicate in or_predicates.iter() {
match or_predicate {
Predicate::And { args } => {
let args_num = args.len();
if shortest_exprs.is_empty() || args_num < shortest_exprs_len {
shortest_exprs = (*args).clone();
shortest_exprs_len = args_num;
}
}
_ => {
// if there is no AND predicate, it must be the shortest expression.
shortest_exprs = vec![or_predicate.clone()];
break;
}
}
}
// dedup shortest_exprs
shortest_exprs.dedup();
// Check each element in shortest_exprs to see if it's in all the OR arguments.
let mut exist_exprs: Vec<Predicate> = vec![];
for expr in shortest_exprs.iter() {
let found = or_predicates.iter().all(|or_predicate| match or_predicate {
Predicate::And { args } => args.contains(expr),
_ => or_predicate == expr,
});
if found {
exist_exprs.push((*expr).clone());
}
}
if exist_exprs.is_empty() {
return Predicate::Or {
args: or_predicates.to_vec(),
};
}
// Rebuild the OR predicate.
// (A AND B) OR A will be optimized to A.
let mut new_or_predicates = vec![];
for or_predicate in or_predicates.iter() {
match or_predicate {
Predicate::And { args } => {
let mut new_args = (*args).clone();
new_args.retain(|expr| !exist_exprs.contains(expr));
if !new_args.is_empty() {
if new_args.len() == 1 {
new_or_predicates.push(new_args[0].clone());
} else {
new_or_predicates.push(Predicate::And { args: new_args });
}
} else {
new_or_predicates.clear();
break;
}
}
_ => {
if exist_exprs.contains(or_predicate) {
new_or_predicates.clear();
break;
}
}
}
}
if !new_or_predicates.is_empty() {
if new_or_predicates.len() == 1 {
exist_exprs.push(new_or_predicates[0].clone());
} else {
exist_exprs.push(Predicate::Or {
args: flatten_or_predicates(new_or_predicates),
});
}
}
if exist_exprs.len() == 1 {
exist_exprs[0].clone()
} else {
Predicate::And {
args: flatten_and_predicates(exist_exprs),
}
}
}
#[cfg(test)]
mod tests {
use crate::rewrite_disjunctive_predicate::{
normalize_predicate, predicate, rewrite_predicate, Predicate,
};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::{and, col, lit, or};
#[test]
fn test_rewrite_predicate() -> Result<()> {
let equi_expr = col("t1.a").eq(col("t2.b"));
let gt_expr = col("t1.c").gt(lit(ScalarValue::Int8(Some(1))));
let lt_expr = col("t1.d").lt(lit(ScalarValue::Int8(Some(2))));
let expr = or(
and(equi_expr.clone(), gt_expr.clone()),
and(equi_expr.clone(), lt_expr.clone()),
);
let predicate = predicate(&expr)?;
assert_eq!(
predicate,
Predicate::Or {
args: vec![
Predicate::And {
args: vec![
Predicate::Other {
expr: Box::new(equi_expr.clone())
},
Predicate::Other {
expr: Box::new(gt_expr.clone())
},
]
},
Predicate::And {
args: vec![
Predicate::Other {
expr: Box::new(equi_expr.clone())
},
Predicate::Other {
expr: Box::new(lt_expr.clone())
},
]
},
]
}
);
let rewritten_predicate = rewrite_predicate(predicate);
assert_eq!(
rewritten_predicate,
Predicate::And {
args: vec![
Predicate::Other {
expr: Box::new(equi_expr.clone())
},
Predicate::Or {
args: vec![
Predicate::Other {
expr: Box::new(gt_expr.clone())
},
Predicate::Other {
expr: Box::new(lt_expr.clone())
},
]
},
]
}
);
let rewritten_expr = normalize_predicate(rewritten_predicate);
assert_eq!(rewritten_expr, and(equi_expr, or(gt_expr, lt_expr)));
Ok(())
}
}