1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Unwrap-cast binary comparison rule can be used to the binary/inlist comparison expr now, and other type
//! of expr can be added if needed.
//! This rule can reduce adding the `Expr::Cast` the expr instead of adding the `Expr::Cast` to literal expr.
use crate::optimizer::ApplyOrder;
use crate::utils::merge_schema;
use crate::{OptimizerConfig, OptimizerRule};
use arrow::datatypes::{
    DataType, TimeUnit, MAX_DECIMAL_FOR_EACH_PRECISION, MIN_DECIMAL_FOR_EACH_PRECISION,
};
use arrow::temporal_conversions::{MICROSECONDS, MILLISECONDS, NANOSECONDS};
use datafusion_common::tree_node::{RewriteRecursion, TreeNodeRewriter};
use datafusion_common::{
    internal_err, DFSchemaRef, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::expr::{BinaryExpr, Cast, InList, TryCast};
use datafusion_expr::expr_rewriter::rewrite_preserving_name;
use datafusion_expr::{
    binary_expr, in_list, lit, Expr, ExprSchemable, LogicalPlan, Operator,
};
use std::cmp::Ordering;
use std::sync::Arc;

/// [`UnwrapCastInComparison`] attempts to remove casts from
/// comparisons to literals ([`ScalarValue`]s) by applying the casts
/// to the literals if possible. It is inspired by the optimizer rule
/// `UnwrapCastInBinaryComparison` of Spark.
///
/// Removing casts often improves performance because:
/// 1. The cast is done once (to the literal) rather than to every value
/// 2. Can enable other optimizations such as predicate pushdown that
///    don't support casting
///
/// The rule is applied to expressions of the following forms:
///
/// 1. `cast(left_expr as data_type) comparison_op literal_expr`
/// 2. `literal_expr comparison_op cast(left_expr as data_type)`
/// 3. `cast(literal_expr) IN (expr1, expr2, ...)`
/// 4. `literal_expr IN (cast(expr1) , cast(expr2), ...)`
///
/// If the expression matches one of the forms above, the rule will
/// ensure the value of `literal` is in range(min, max) of the
/// expr's data_type, and if the scalar is within range, the literal
/// will be casted to the data type of expr on the other side, and the
/// cast will be removed from the other side.
///
/// # Example
///
/// If the DataType of c1 is INT32. Given the filter
///
/// ```text
/// Filter: cast(c1 as INT64) > INT64(10)`
/// ```
///
/// This rule will remove the cast and rewrite the expression to:
///
/// ```text
/// Filter: c1 > INT32(10)
/// ```
///
#[derive(Default)]
pub struct UnwrapCastInComparison {}

impl UnwrapCastInComparison {
    pub fn new() -> Self {
        Self::default()
    }
}

impl OptimizerRule for UnwrapCastInComparison {
    fn try_optimize(
        &self,
        plan: &LogicalPlan,
        _config: &dyn OptimizerConfig,
    ) -> Result<Option<LogicalPlan>> {
        let mut schema = merge_schema(plan.inputs());

        schema.merge(plan.schema());

        let mut expr_rewriter = UnwrapCastExprRewriter {
            schema: Arc::new(schema),
        };

        let new_exprs = plan
            .expressions()
            .into_iter()
            .map(|expr| rewrite_preserving_name(expr, &mut expr_rewriter))
            .collect::<Result<Vec<_>>>()?;

        let inputs: Vec<LogicalPlan> = plan.inputs().into_iter().cloned().collect();
        Ok(Some(plan.with_new_exprs(new_exprs, inputs.as_slice())?))
    }

    fn name(&self) -> &str {
        "unwrap_cast_in_comparison"
    }

    fn apply_order(&self) -> Option<ApplyOrder> {
        Some(ApplyOrder::BottomUp)
    }
}

struct UnwrapCastExprRewriter {
    schema: DFSchemaRef,
}

impl TreeNodeRewriter for UnwrapCastExprRewriter {
    type N = Expr;

    fn pre_visit(&mut self, _expr: &Expr) -> Result<RewriteRecursion> {
        Ok(RewriteRecursion::Continue)
    }

    fn mutate(&mut self, expr: Expr) -> Result<Expr> {
        match &expr {
            // For case:
            // try_cast/cast(expr as data_type) op literal
            // literal op try_cast/cast(expr as data_type)
            Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
                let left = left.as_ref().clone();
                let right = right.as_ref().clone();
                let left_type = left.get_type(&self.schema)?;
                let right_type = right.get_type(&self.schema)?;
                // Because the plan has been done the type coercion, the left and right must be equal
                if is_support_data_type(&left_type)
                    && is_support_data_type(&right_type)
                    && is_comparison_op(op)
                {
                    match (&left, &right) {
                        (
                            Expr::Literal(left_lit_value),
                            Expr::TryCast(TryCast { expr, .. })
                            | Expr::Cast(Cast { expr, .. }),
                        ) => {
                            // if the left_lit_value can be casted to the type of expr
                            // we need to unwrap the cast for cast/try_cast expr, and add cast to the literal
                            let expr_type = expr.get_type(&self.schema)?;
                            let casted_scalar_value =
                                try_cast_literal_to_type(left_lit_value, &expr_type)?;
                            if let Some(value) = casted_scalar_value {
                                // unwrap the cast/try_cast for the right expr
                                return Ok(binary_expr(
                                    lit(value),
                                    *op,
                                    expr.as_ref().clone(),
                                ));
                            }
                        }
                        (
                            Expr::TryCast(TryCast { expr, .. })
                            | Expr::Cast(Cast { expr, .. }),
                            Expr::Literal(right_lit_value),
                        ) => {
                            // if the right_lit_value can be casted to the type of expr
                            // we need to unwrap the cast for cast/try_cast expr, and add cast to the literal
                            let expr_type = expr.get_type(&self.schema)?;
                            let casted_scalar_value =
                                try_cast_literal_to_type(right_lit_value, &expr_type)?;
                            if let Some(value) = casted_scalar_value {
                                // unwrap the cast/try_cast for the left expr
                                return Ok(binary_expr(
                                    expr.as_ref().clone(),
                                    *op,
                                    lit(value),
                                ));
                            }
                        }
                        (_, _) => {
                            // do nothing
                        }
                    };
                }
                // return the new binary op
                Ok(binary_expr(left, *op, right))
            }
            // For case:
            // try_cast/cast(expr as left_type) in (expr1,expr2,expr3)
            Expr::InList(InList {
                expr: left_expr,
                list,
                negated,
            }) => {
                if let Some(
                    Expr::TryCast(TryCast {
                        expr: internal_left_expr,
                        ..
                    })
                    | Expr::Cast(Cast {
                        expr: internal_left_expr,
                        ..
                    }),
                ) = Some(left_expr.as_ref())
                {
                    let internal_left = internal_left_expr.as_ref().clone();
                    let internal_left_type = internal_left.get_type(&self.schema);
                    if internal_left_type.is_err() {
                        // error data type
                        return Ok(expr);
                    }
                    let internal_left_type = internal_left_type?;
                    if !is_support_data_type(&internal_left_type) {
                        // not supported data type
                        return Ok(expr);
                    }
                    let right_exprs = list
                        .iter()
                        .map(|right| {
                            let right_type = right.get_type(&self.schema)?;
                            if !is_support_data_type(&right_type) {
                                return internal_err!(
                                    "The type of list expr {} not support",
                                    &right_type
                                );
                            }
                            match right {
                                Expr::Literal(right_lit_value) => {
                                    // if the right_lit_value can be casted to the type of internal_left_expr
                                    // we need to unwrap the cast for cast/try_cast expr, and add cast to the literal
                                    let casted_scalar_value =
                                        try_cast_literal_to_type(right_lit_value, &internal_left_type)?;
                                    if let Some(value) = casted_scalar_value {
                                        Ok(lit(value))
                                    } else {
                                        internal_err!(
                                            "Can't cast the list expr {:?} to type {:?}",
                                            right_lit_value, &internal_left_type
                                        )
                                    }
                                }
                                other_expr => internal_err!(
                                    "Only support literal expr to optimize, but the expr is {:?}",
                                    &other_expr
                                ),
                            }
                        })
                        .collect::<Result<Vec<_>>>();
                    match right_exprs {
                        Ok(right_exprs) => {
                            Ok(in_list(internal_left, right_exprs, *negated))
                        }
                        Err(_) => Ok(expr),
                    }
                } else {
                    Ok(expr)
                }
            }
            // TODO: handle other expr type and dfs visit them
            _ => Ok(expr),
        }
    }
}

fn is_comparison_op(op: &Operator) -> bool {
    matches!(
        op,
        Operator::Eq
            | Operator::NotEq
            | Operator::Gt
            | Operator::GtEq
            | Operator::Lt
            | Operator::LtEq
    )
}

fn is_support_data_type(data_type: &DataType) -> bool {
    matches!(
        data_type,
        DataType::UInt8
            | DataType::UInt16
            | DataType::UInt32
            | DataType::UInt64
            | DataType::Int8
            | DataType::Int16
            | DataType::Int32
            | DataType::Int64
            | DataType::Decimal128(_, _)
            | DataType::Timestamp(_, _)
    )
}

fn try_cast_literal_to_type(
    lit_value: &ScalarValue,
    target_type: &DataType,
) -> Result<Option<ScalarValue>> {
    let lit_data_type = lit_value.data_type();
    // the rule just support the signed numeric data type now
    if !is_support_data_type(&lit_data_type) || !is_support_data_type(target_type) {
        return Ok(None);
    }
    if lit_value.is_null() {
        // null value can be cast to any type of null value
        return Ok(Some(ScalarValue::try_from(target_type)?));
    }
    let mul = match target_type {
        DataType::UInt8
        | DataType::UInt16
        | DataType::UInt32
        | DataType::UInt64
        | DataType::Int8
        | DataType::Int16
        | DataType::Int32
        | DataType::Int64 => 1_i128,
        DataType::Timestamp(_, _) => 1_i128,
        DataType::Decimal128(_, scale) => 10_i128.pow(*scale as u32),
        other_type => {
            return internal_err!("Error target data type {other_type:?}");
        }
    };
    let (target_min, target_max) = match target_type {
        DataType::UInt8 => (u8::MIN as i128, u8::MAX as i128),
        DataType::UInt16 => (u16::MIN as i128, u16::MAX as i128),
        DataType::UInt32 => (u32::MIN as i128, u32::MAX as i128),
        DataType::UInt64 => (u64::MIN as i128, u64::MAX as i128),
        DataType::Int8 => (i8::MIN as i128, i8::MAX as i128),
        DataType::Int16 => (i16::MIN as i128, i16::MAX as i128),
        DataType::Int32 => (i32::MIN as i128, i32::MAX as i128),
        DataType::Int64 => (i64::MIN as i128, i64::MAX as i128),
        DataType::Timestamp(_, _) => (i64::MIN as i128, i64::MAX as i128),
        DataType::Decimal128(precision, _) => (
            // Different precision for decimal128 can store different range of value.
            // For example, the precision is 3, the max of value is `999` and the min
            // value is `-999`
            MIN_DECIMAL_FOR_EACH_PRECISION[*precision as usize - 1],
            MAX_DECIMAL_FOR_EACH_PRECISION[*precision as usize - 1],
        ),
        other_type => {
            return internal_err!("Error target data type {other_type:?}");
        }
    };
    let lit_value_target_type = match lit_value {
        ScalarValue::Int8(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::Int16(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::Int32(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::Int64(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::UInt8(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::UInt16(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::UInt32(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::UInt64(Some(v)) => (*v as i128).checked_mul(mul),
        ScalarValue::TimestampSecond(Some(v), _) => (*v as i128).checked_mul(mul),
        ScalarValue::TimestampMillisecond(Some(v), _) => (*v as i128).checked_mul(mul),
        ScalarValue::TimestampMicrosecond(Some(v), _) => (*v as i128).checked_mul(mul),
        ScalarValue::TimestampNanosecond(Some(v), _) => (*v as i128).checked_mul(mul),
        ScalarValue::Decimal128(Some(v), _, scale) => {
            let lit_scale_mul = 10_i128.pow(*scale as u32);
            if mul >= lit_scale_mul {
                // Example:
                // lit is decimal(123,3,2)
                // target type is decimal(5,3)
                // the lit can be converted to the decimal(1230,5,3)
                (*v).checked_mul(mul / lit_scale_mul)
            } else if (*v) % (lit_scale_mul / mul) == 0 {
                // Example:
                // lit is decimal(123000,10,3)
                // target type is int32: the lit can be converted to INT32(123)
                // target type is decimal(10,2): the lit can be converted to decimal(12300,10,2)
                Some(*v / (lit_scale_mul / mul))
            } else {
                // can't convert the lit decimal to the target data type
                None
            }
        }
        other_value => {
            return internal_err!("Invalid literal value {other_value:?}");
        }
    };

    match lit_value_target_type {
        None => Ok(None),
        Some(value) => {
            if value >= target_min && value <= target_max {
                // the value casted from lit to the target type is in the range of target type.
                // return the target type of scalar value
                let result_scalar = match target_type {
                    DataType::Int8 => ScalarValue::Int8(Some(value as i8)),
                    DataType::Int16 => ScalarValue::Int16(Some(value as i16)),
                    DataType::Int32 => ScalarValue::Int32(Some(value as i32)),
                    DataType::Int64 => ScalarValue::Int64(Some(value as i64)),
                    DataType::UInt8 => ScalarValue::UInt8(Some(value as u8)),
                    DataType::UInt16 => ScalarValue::UInt16(Some(value as u16)),
                    DataType::UInt32 => ScalarValue::UInt32(Some(value as u32)),
                    DataType::UInt64 => ScalarValue::UInt64(Some(value as u64)),
                    DataType::Timestamp(TimeUnit::Second, tz) => {
                        let value = cast_between_timestamp(
                            lit_data_type,
                            DataType::Timestamp(TimeUnit::Second, tz.clone()),
                            value,
                        );
                        ScalarValue::TimestampSecond(value, tz.clone())
                    }
                    DataType::Timestamp(TimeUnit::Millisecond, tz) => {
                        let value = cast_between_timestamp(
                            lit_data_type,
                            DataType::Timestamp(TimeUnit::Millisecond, tz.clone()),
                            value,
                        );
                        ScalarValue::TimestampMillisecond(value, tz.clone())
                    }
                    DataType::Timestamp(TimeUnit::Microsecond, tz) => {
                        let value = cast_between_timestamp(
                            lit_data_type,
                            DataType::Timestamp(TimeUnit::Microsecond, tz.clone()),
                            value,
                        );
                        ScalarValue::TimestampMicrosecond(value, tz.clone())
                    }
                    DataType::Timestamp(TimeUnit::Nanosecond, tz) => {
                        let value = cast_between_timestamp(
                            lit_data_type,
                            DataType::Timestamp(TimeUnit::Nanosecond, tz.clone()),
                            value,
                        );
                        ScalarValue::TimestampNanosecond(value, tz.clone())
                    }
                    DataType::Decimal128(p, s) => {
                        ScalarValue::Decimal128(Some(value), *p, *s)
                    }
                    other_type => {
                        return internal_err!("Error target data type {other_type:?}");
                    }
                };
                Ok(Some(result_scalar))
            } else {
                Ok(None)
            }
        }
    }
}

/// Cast a timestamp value from one unit to another
fn cast_between_timestamp(from: DataType, to: DataType, value: i128) -> Option<i64> {
    let value = value as i64;
    let from_scale = match from {
        DataType::Timestamp(TimeUnit::Second, _) => 1,
        DataType::Timestamp(TimeUnit::Millisecond, _) => MILLISECONDS,
        DataType::Timestamp(TimeUnit::Microsecond, _) => MICROSECONDS,
        DataType::Timestamp(TimeUnit::Nanosecond, _) => NANOSECONDS,
        _ => return Some(value),
    };

    let to_scale = match to {
        DataType::Timestamp(TimeUnit::Second, _) => 1,
        DataType::Timestamp(TimeUnit::Millisecond, _) => MILLISECONDS,
        DataType::Timestamp(TimeUnit::Microsecond, _) => MICROSECONDS,
        DataType::Timestamp(TimeUnit::Nanosecond, _) => NANOSECONDS,
        _ => return Some(value),
    };

    match from_scale.cmp(&to_scale) {
        Ordering::Less => value.checked_mul(to_scale / from_scale),
        Ordering::Greater => Some(value / (from_scale / to_scale)),
        Ordering::Equal => Some(value),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::unwrap_cast_in_comparison::UnwrapCastExprRewriter;
    use arrow::compute::{cast_with_options, CastOptions};
    use arrow::datatypes::{DataType, Field};
    use datafusion_common::tree_node::TreeNode;
    use datafusion_common::{DFField, DFSchema, DFSchemaRef, ScalarValue};
    use datafusion_expr::{cast, col, in_list, lit, try_cast, Expr};
    use std::collections::HashMap;
    use std::sync::Arc;

    #[test]
    fn test_not_unwrap_cast_comparison() {
        let schema = expr_test_schema();
        // cast(INT32(c1), INT64) > INT64(c2)
        let c1_gt_c2 = cast(col("c1"), DataType::Int64).gt(col("c2"));
        assert_eq!(optimize_test(c1_gt_c2.clone(), &schema), c1_gt_c2);

        // INT32(c1) < INT32(16), the type is same
        let expr_lt = col("c1").lt(lit(16i32));
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);

        // the 99999999999 is not within the range of MAX(int32) and MIN(int32), we don't cast the lit(99999999999) to int32 type
        let expr_lt = cast(col("c1"), DataType::Int64).lt(lit(99999999999i64));
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);
    }

    #[test]
    fn test_unwrap_cast_comparison() {
        let schema = expr_test_schema();
        // cast(c1, INT64) < INT64(16) -> INT32(c1) < cast(INT32(16))
        // the 16 is within the range of MAX(int32) and MIN(int32), we can cast the 16 to int32(16)
        let expr_lt = cast(col("c1"), DataType::Int64).lt(lit(16i64));
        let expected = col("c1").lt(lit(16i32));
        assert_eq!(optimize_test(expr_lt, &schema), expected);
        let expr_lt = try_cast(col("c1"), DataType::Int64).lt(lit(16i64));
        let expected = col("c1").lt(lit(16i32));
        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // cast(c2, INT32) = INT32(16) => INT64(c2) = INT64(16)
        let c2_eq_lit = cast(col("c2"), DataType::Int32).eq(lit(16i32));
        let expected = col("c2").eq(lit(16i64));
        assert_eq!(optimize_test(c2_eq_lit, &schema), expected);

        // cast(c1, INT64) < INT64(NULL) => INT32(c1) < INT32(NULL)
        let c1_lt_lit_null = cast(col("c1"), DataType::Int64).lt(null_i64());
        let expected = col("c1").lt(null_i32());
        assert_eq!(optimize_test(c1_lt_lit_null, &schema), expected);

        // cast(INT8(NULL), INT32) < INT32(12) => INT8(NULL) < INT8(12)
        let lit_lt_lit = cast(null_i8(), DataType::Int32).lt(lit(12i32));
        let expected = null_i8().lt(lit(12i8));
        assert_eq!(optimize_test(lit_lt_lit, &schema), expected);
    }

    #[test]
    fn test_unwrap_cast_comparison_unsigned() {
        // "cast(c6, UINT64) = 0u64 => c6 = 0u32
        let schema = expr_test_schema();
        let expr_input = cast(col("c6"), DataType::UInt64).eq(lit(0u64));
        let expected = col("c6").eq(lit(0u32));
        assert_eq!(optimize_test(expr_input, &schema), expected);
    }

    #[test]
    fn test_not_unwrap_cast_with_decimal_comparison() {
        let schema = expr_test_schema();
        // integer to decimal: value is out of the bounds of the decimal
        // cast(c3, INT64) = INT64(100000000000000000)
        let expr_eq = cast(col("c3"), DataType::Int64).eq(lit(100000000000000000i64));
        assert_eq!(optimize_test(expr_eq.clone(), &schema), expr_eq);

        // cast(c4, INT64) = INT64(1000) will overflow the i128
        let expr_eq = cast(col("c4"), DataType::Int64).eq(lit(1000i64));
        assert_eq!(optimize_test(expr_eq.clone(), &schema), expr_eq);

        // decimal to decimal: value will lose the scale when convert to the target data type
        // c3 = DECIMAL(12340,20,4)
        let expr_eq =
            cast(col("c3"), DataType::Decimal128(20, 4)).eq(lit_decimal(12340, 20, 4));
        assert_eq!(optimize_test(expr_eq.clone(), &schema), expr_eq);

        // decimal to integer
        // c1 = DECIMAL(123, 10, 1): value will lose the scale when convert to the target data type
        let expr_eq =
            cast(col("c1"), DataType::Decimal128(10, 1)).eq(lit_decimal(123, 10, 1));
        assert_eq!(optimize_test(expr_eq.clone(), &schema), expr_eq);

        // c1 = DECIMAL(1230, 10, 2): value will lose the scale when convert to the target data type
        let expr_eq =
            cast(col("c1"), DataType::Decimal128(10, 2)).eq(lit_decimal(1230, 10, 2));
        assert_eq!(optimize_test(expr_eq.clone(), &schema), expr_eq);
    }

    #[test]
    fn test_unwrap_cast_with_decimal_lit_comparison() {
        let schema = expr_test_schema();
        // integer to decimal
        // c3 < INT64(16) -> c3 < (CAST(INT64(16) AS DECIMAL(18,2));
        let expr_lt = try_cast(col("c3"), DataType::Int64).lt(lit(16i64));
        let expected = col("c3").lt(lit_decimal(1600, 18, 2));
        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // c3 < INT64(NULL)
        let c1_lt_lit_null = cast(col("c3"), DataType::Int64).lt(null_i64());
        let expected = col("c3").lt(null_decimal(18, 2));
        assert_eq!(optimize_test(c1_lt_lit_null, &schema), expected);

        // decimal to decimal
        // c3 < Decimal(123,10,0) -> c3 < CAST(DECIMAL(123,10,0) AS DECIMAL(18,2)) -> c3 < DECIMAL(12300,18,2)
        let expr_lt =
            cast(col("c3"), DataType::Decimal128(10, 0)).lt(lit_decimal(123, 10, 0));
        let expected = col("c3").lt(lit_decimal(12300, 18, 2));
        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // c3 < Decimal(1230,10,3) -> c3 < CAST(DECIMAL(1230,10,3) AS DECIMAL(18,2)) -> c3 < DECIMAL(123,18,2)
        let expr_lt =
            cast(col("c3"), DataType::Decimal128(10, 3)).lt(lit_decimal(1230, 10, 3));
        let expected = col("c3").lt(lit_decimal(123, 18, 2));
        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // decimal to integer
        // c1 < Decimal(12300, 10, 2) -> c1 < CAST(DECIMAL(12300,10,2) AS INT32) -> c1 < INT32(123)
        let expr_lt =
            cast(col("c1"), DataType::Decimal128(10, 2)).lt(lit_decimal(12300, 10, 2));
        let expected = col("c1").lt(lit(123i32));
        assert_eq!(optimize_test(expr_lt, &schema), expected);
    }

    #[test]
    fn test_not_unwrap_list_cast_lit_comparison() {
        let schema = expr_test_schema();
        // internal left type is not supported
        // FLOAT32(C5) in ...
        let expr_lt =
            cast(col("c5"), DataType::Int64).in_list(vec![lit(12i64), lit(12i64)], false);
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);

        // cast(INT32(C1), Float32) in (FLOAT32(1.23), Float32(12), Float32(12))
        let expr_lt = cast(col("c1"), DataType::Float32)
            .in_list(vec![lit(12.0f32), lit(12.0f32), lit(1.23f32)], false);
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);

        // INT32(C1) in (INT64(99999999999), INT64(12))
        let expr_lt = cast(col("c1"), DataType::Int64)
            .in_list(vec![lit(12i32), lit(99999999999i64)], false);
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);

        // DECIMAL(C3) in (INT64(12), INT32(12), DECIMAL(128,12,3))
        let expr_lt = cast(col("c3"), DataType::Decimal128(12, 3)).in_list(
            vec![
                lit_decimal(12, 12, 3),
                lit_decimal(12, 12, 3),
                lit_decimal(128, 12, 3),
            ],
            false,
        );
        assert_eq!(optimize_test(expr_lt.clone(), &schema), expr_lt);
    }

    #[test]
    fn test_unwrap_list_cast_comparison() {
        let schema = expr_test_schema();
        // INT32(C1) IN (INT32(12),INT64(24)) -> INT32(C1) IN (INT32(12),INT32(24))
        let expr_lt =
            cast(col("c1"), DataType::Int64).in_list(vec![lit(12i64), lit(24i64)], false);
        let expected = col("c1").in_list(vec![lit(12i32), lit(24i32)], false);
        assert_eq!(optimize_test(expr_lt, &schema), expected);
        // INT32(C2) IN (INT64(NULL),INT64(24)) -> INT32(C1) IN (INT32(12),INT32(24))
        let expr_lt =
            cast(col("c2"), DataType::Int32).in_list(vec![null_i32(), lit(14i32)], false);
        let expected = col("c2").in_list(vec![null_i64(), lit(14i64)], false);

        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // decimal test case
        // c3 is decimal(18,2)
        let expr_lt = cast(col("c3"), DataType::Decimal128(19, 3)).in_list(
            vec![
                lit_decimal(12000, 19, 3),
                lit_decimal(24000, 19, 3),
                lit_decimal(1280, 19, 3),
                lit_decimal(1240, 19, 3),
            ],
            false,
        );
        let expected = col("c3").in_list(
            vec![
                lit_decimal(1200, 18, 2),
                lit_decimal(2400, 18, 2),
                lit_decimal(128, 18, 2),
                lit_decimal(124, 18, 2),
            ],
            false,
        );
        assert_eq!(optimize_test(expr_lt, &schema), expected);

        // cast(INT32(12), INT64) IN (.....)
        let expr_lt = cast(lit(12i32), DataType::Int64)
            .in_list(vec![lit(13i64), lit(12i64)], false);
        let expected = lit(12i32).in_list(vec![lit(13i32), lit(12i32)], false);
        assert_eq!(optimize_test(expr_lt, &schema), expected);
    }

    #[test]
    fn aliased() {
        let schema = expr_test_schema();
        // c1 < INT64(16) -> c1 < cast(INT32(16))
        // the 16 is within the range of MAX(int32) and MIN(int32), we can cast the 16 to int32(16)
        let expr_lt = cast(col("c1"), DataType::Int64).lt(lit(16i64)).alias("x");
        let expected = col("c1").lt(lit(16i32)).alias("x");
        assert_eq!(optimize_test(expr_lt, &schema), expected);
    }

    #[test]
    fn nested() {
        let schema = expr_test_schema();
        // c1 < INT64(16) OR c1 > INT64(32) -> c1 < INT32(16) OR c1 > INT32(32)
        // the 16 and 32 are within the range of MAX(int32) and MIN(int32), we can cast them to int32
        let expr_lt = cast(col("c1"), DataType::Int64).lt(lit(16i64)).or(cast(
            col("c1"),
            DataType::Int64,
        )
        .gt(lit(32i64)));
        let expected = col("c1").lt(lit(16i32)).or(col("c1").gt(lit(32i32)));
        assert_eq!(optimize_test(expr_lt, &schema), expected);
    }

    #[test]
    fn test_not_support_data_type() {
        // "c6 > 0" will be cast to `cast(c6 as float) > 0
        // but the type of c6 is uint32
        // the rewriter will not throw error and just return the original expr
        let schema = expr_test_schema();
        let expr_input = cast(col("c6"), DataType::Float64).eq(lit(0f64));
        assert_eq!(optimize_test(expr_input.clone(), &schema), expr_input);

        // inlist for unsupported data type
        let expr_input =
            in_list(cast(col("c6"), DataType::Float64), vec![lit(0f64)], false);
        assert_eq!(optimize_test(expr_input.clone(), &schema), expr_input);
    }

    #[test]
    /// Basic integration test for unwrapping casts with different timezones
    fn test_unwrap_cast_with_timestamp_nanos() {
        let schema = expr_test_schema();
        // cast(ts_nano as Timestamp(Nanosecond, UTC)) < 1666612093000000000::Timestamp(Nanosecond, Utc))
        let expr_lt = try_cast(col("ts_nano_none"), timestamp_nano_utc_type())
            .lt(lit_timestamp_nano_utc(1666612093000000000));
        let expected =
            col("ts_nano_none").lt(lit_timestamp_nano_none(1666612093000000000));
        assert_eq!(optimize_test(expr_lt, &schema), expected);
    }

    fn optimize_test(expr: Expr, schema: &DFSchemaRef) -> Expr {
        let mut expr_rewriter = UnwrapCastExprRewriter {
            schema: schema.clone(),
        };
        expr.rewrite(&mut expr_rewriter).unwrap()
    }

    fn expr_test_schema() -> DFSchemaRef {
        Arc::new(
            DFSchema::new_with_metadata(
                vec![
                    DFField::new_unqualified("c1", DataType::Int32, false),
                    DFField::new_unqualified("c2", DataType::Int64, false),
                    DFField::new_unqualified("c3", DataType::Decimal128(18, 2), false),
                    DFField::new_unqualified("c4", DataType::Decimal128(38, 37), false),
                    DFField::new_unqualified("c5", DataType::Float32, false),
                    DFField::new_unqualified("c6", DataType::UInt32, false),
                    DFField::new_unqualified(
                        "ts_nano_none",
                        timestamp_nano_none_type(),
                        false,
                    ),
                    DFField::new_unqualified(
                        "ts_nano_utf",
                        timestamp_nano_utc_type(),
                        false,
                    ),
                ],
                HashMap::new(),
            )
            .unwrap(),
        )
    }

    fn null_i8() -> Expr {
        lit(ScalarValue::Int8(None))
    }

    fn null_i32() -> Expr {
        lit(ScalarValue::Int32(None))
    }

    fn null_i64() -> Expr {
        lit(ScalarValue::Int64(None))
    }

    fn lit_decimal(value: i128, precision: u8, scale: i8) -> Expr {
        lit(ScalarValue::Decimal128(Some(value), precision, scale))
    }

    fn lit_timestamp_nano_none(ts: i64) -> Expr {
        lit(ScalarValue::TimestampNanosecond(Some(ts), None))
    }

    fn lit_timestamp_nano_utc(ts: i64) -> Expr {
        let utc = Some("+0:00".into());
        lit(ScalarValue::TimestampNanosecond(Some(ts), utc))
    }

    fn null_decimal(precision: u8, scale: i8) -> Expr {
        lit(ScalarValue::Decimal128(None, precision, scale))
    }

    fn timestamp_nano_none_type() -> DataType {
        DataType::Timestamp(TimeUnit::Nanosecond, None)
    }

    // this is the type that now() returns
    fn timestamp_nano_utc_type() -> DataType {
        let utc = Some("+0:00".into());
        DataType::Timestamp(TimeUnit::Nanosecond, utc)
    }

    #[test]
    fn test_try_cast_to_type_nulls() {
        // test that nulls can be cast to/from all integer types
        let scalars = vec![
            ScalarValue::Int8(None),
            ScalarValue::Int16(None),
            ScalarValue::Int32(None),
            ScalarValue::Int64(None),
            ScalarValue::UInt8(None),
            ScalarValue::UInt16(None),
            ScalarValue::UInt32(None),
            ScalarValue::UInt64(None),
            ScalarValue::Decimal128(None, 3, 0),
            ScalarValue::Decimal128(None, 8, 2),
        ];

        for s1 in &scalars {
            for s2 in &scalars {
                let expected_value = ExpectedCast::Value(s2.clone());

                expect_cast(s1.clone(), s2.data_type(), expected_value);
            }
        }
    }

    #[test]
    fn test_try_cast_to_type_int_in_range() {
        // test values that can be cast to/from all integer types
        let scalars = vec![
            ScalarValue::Int8(Some(123)),
            ScalarValue::Int16(Some(123)),
            ScalarValue::Int32(Some(123)),
            ScalarValue::Int64(Some(123)),
            ScalarValue::UInt8(Some(123)),
            ScalarValue::UInt16(Some(123)),
            ScalarValue::UInt32(Some(123)),
            ScalarValue::UInt64(Some(123)),
            ScalarValue::Decimal128(Some(123), 3, 0),
            ScalarValue::Decimal128(Some(12300), 8, 2),
        ];

        for s1 in &scalars {
            for s2 in &scalars {
                let expected_value = ExpectedCast::Value(s2.clone());

                expect_cast(s1.clone(), s2.data_type(), expected_value);
            }
        }

        let max_i32 = ScalarValue::Int32(Some(i32::MAX));
        expect_cast(
            max_i32,
            DataType::UInt64,
            ExpectedCast::Value(ScalarValue::UInt64(Some(i32::MAX as u64))),
        );

        let min_i32 = ScalarValue::Int32(Some(i32::MIN));
        expect_cast(
            min_i32,
            DataType::Int64,
            ExpectedCast::Value(ScalarValue::Int64(Some(i32::MIN as i64))),
        );

        let max_i64 = ScalarValue::Int64(Some(i64::MAX));
        expect_cast(
            max_i64,
            DataType::UInt64,
            ExpectedCast::Value(ScalarValue::UInt64(Some(i64::MAX as u64))),
        );
    }

    #[test]
    fn test_try_cast_to_type_int_out_of_range() {
        let min_i32 = ScalarValue::Int32(Some(i32::MIN));
        let min_i64 = ScalarValue::Int64(Some(i64::MIN));
        let max_i64 = ScalarValue::Int64(Some(i64::MAX));
        let max_u64 = ScalarValue::UInt64(Some(u64::MAX));

        expect_cast(max_i64.clone(), DataType::Int8, ExpectedCast::NoValue);

        expect_cast(max_i64.clone(), DataType::Int16, ExpectedCast::NoValue);

        expect_cast(max_i64, DataType::Int32, ExpectedCast::NoValue);

        expect_cast(max_u64, DataType::Int64, ExpectedCast::NoValue);

        expect_cast(min_i64, DataType::UInt64, ExpectedCast::NoValue);

        expect_cast(min_i32, DataType::UInt64, ExpectedCast::NoValue);

        // decimal out of range
        expect_cast(
            ScalarValue::Decimal128(Some(99999999999999999999999999999999999900), 38, 0),
            DataType::Int64,
            ExpectedCast::NoValue,
        );

        expect_cast(
            ScalarValue::Decimal128(Some(-9999999999999999999999999999999999), 37, 1),
            DataType::Int64,
            ExpectedCast::NoValue,
        );
    }

    #[test]
    fn test_try_decimal_cast_in_range() {
        expect_cast(
            ScalarValue::Decimal128(Some(12300), 5, 2),
            DataType::Decimal128(3, 0),
            ExpectedCast::Value(ScalarValue::Decimal128(Some(123), 3, 0)),
        );

        expect_cast(
            ScalarValue::Decimal128(Some(12300), 5, 2),
            DataType::Decimal128(8, 0),
            ExpectedCast::Value(ScalarValue::Decimal128(Some(123), 8, 0)),
        );

        expect_cast(
            ScalarValue::Decimal128(Some(12300), 5, 2),
            DataType::Decimal128(8, 5),
            ExpectedCast::Value(ScalarValue::Decimal128(Some(12300000), 8, 5)),
        );
    }

    #[test]
    fn test_try_decimal_cast_out_of_range() {
        // decimal would lose precision
        expect_cast(
            ScalarValue::Decimal128(Some(12345), 5, 2),
            DataType::Decimal128(3, 0),
            ExpectedCast::NoValue,
        );

        // decimal would lose precision
        expect_cast(
            ScalarValue::Decimal128(Some(12300), 5, 2),
            DataType::Decimal128(2, 0),
            ExpectedCast::NoValue,
        );
    }

    #[test]
    fn test_try_cast_to_type_timestamps() {
        for time_unit in [
            TimeUnit::Second,
            TimeUnit::Millisecond,
            TimeUnit::Microsecond,
            TimeUnit::Nanosecond,
        ] {
            let utc = Some("+00:00".into());
            // No timezone, utc timezone
            let (lit_tz_none, lit_tz_utc) = match time_unit {
                TimeUnit::Second => (
                    ScalarValue::TimestampSecond(Some(12345), None),
                    ScalarValue::TimestampSecond(Some(12345), utc),
                ),

                TimeUnit::Millisecond => (
                    ScalarValue::TimestampMillisecond(Some(12345), None),
                    ScalarValue::TimestampMillisecond(Some(12345), utc),
                ),

                TimeUnit::Microsecond => (
                    ScalarValue::TimestampMicrosecond(Some(12345), None),
                    ScalarValue::TimestampMicrosecond(Some(12345), utc),
                ),

                TimeUnit::Nanosecond => (
                    ScalarValue::TimestampNanosecond(Some(12345), None),
                    ScalarValue::TimestampNanosecond(Some(12345), utc),
                ),
            };

            // Datafusion ignores timezones for comparisons of ScalarValue
            // so double check it here
            assert_eq!(lit_tz_none, lit_tz_utc);

            // e.g. DataType::Timestamp(_, None)
            let dt_tz_none = lit_tz_none.data_type();

            // e.g. DataType::Timestamp(_, Some(utc))
            let dt_tz_utc = lit_tz_utc.data_type();

            // None <--> None
            expect_cast(
                lit_tz_none.clone(),
                dt_tz_none.clone(),
                ExpectedCast::Value(lit_tz_none.clone()),
            );

            // None <--> Utc
            expect_cast(
                lit_tz_none.clone(),
                dt_tz_utc.clone(),
                ExpectedCast::Value(lit_tz_utc.clone()),
            );

            // Utc <--> None
            expect_cast(
                lit_tz_utc.clone(),
                dt_tz_none.clone(),
                ExpectedCast::Value(lit_tz_none.clone()),
            );

            // Utc <--> Utc
            expect_cast(
                lit_tz_utc.clone(),
                dt_tz_utc.clone(),
                ExpectedCast::Value(lit_tz_utc.clone()),
            );

            // timestamp to int64
            expect_cast(
                lit_tz_utc.clone(),
                DataType::Int64,
                ExpectedCast::Value(ScalarValue::Int64(Some(12345))),
            );

            // int64 to timestamp
            expect_cast(
                ScalarValue::Int64(Some(12345)),
                dt_tz_none.clone(),
                ExpectedCast::Value(lit_tz_none.clone()),
            );

            // int64 to timestamp
            expect_cast(
                ScalarValue::Int64(Some(12345)),
                dt_tz_utc.clone(),
                ExpectedCast::Value(lit_tz_utc.clone()),
            );

            // timestamp to string (not supported yet)
            expect_cast(
                lit_tz_utc.clone(),
                DataType::LargeUtf8,
                ExpectedCast::NoValue,
            );
        }
    }

    #[test]
    fn test_try_cast_to_type_unsupported() {
        // int64 to list
        expect_cast(
            ScalarValue::Int64(Some(12345)),
            DataType::List(Arc::new(Field::new("f", DataType::Int32, true))),
            ExpectedCast::NoValue,
        );
    }

    #[derive(Debug, Clone)]
    enum ExpectedCast {
        /// test successfully cast value and it is as specified
        Value(ScalarValue),
        /// test returned OK, but could not cast the value
        NoValue,
    }

    /// Runs try_cast_literal_to_type with the specified inputs and
    /// ensure it computes the expected output, and ensures the
    /// casting is consistent with the Arrow kernels
    fn expect_cast(
        literal: ScalarValue,
        target_type: DataType,
        expected_result: ExpectedCast,
    ) {
        let actual_result = try_cast_literal_to_type(&literal, &target_type);

        println!("expect_cast: ");
        println!("  {literal:?} --> {target_type:?}");
        println!("  expected_result: {expected_result:?}");
        println!("  actual_result:   {actual_result:?}");

        match expected_result {
            ExpectedCast::Value(expected_value) => {
                let actual_value = actual_result
                    .expect("Expected success but got error")
                    .expect("Expected cast value but got None");

                assert_eq!(actual_value, expected_value);

                // Verify that calling the arrow
                // cast kernel yields the same results
                // input array
                let literal_array = literal.to_array_of_size(1);
                let expected_array = expected_value.to_array_of_size(1);
                let cast_array = cast_with_options(
                    &literal_array,
                    &target_type,
                    &CastOptions::default(),
                )
                .expect("Expected to be cast array with arrow cast kernel");

                assert_eq!(
                    &expected_array, &cast_array,
                    "Result of casing {literal:?} with arrow was\n {cast_array:#?}\nbut expected\n{expected_array:#?}"
                );

                // Verify that for timestamp types the timezones are the same
                // (ScalarValue::cmp doesn't account for timezones);
                if let (
                    DataType::Timestamp(left_unit, left_tz),
                    DataType::Timestamp(right_unit, right_tz),
                ) = (actual_value.data_type(), expected_value.data_type())
                {
                    assert_eq!(left_unit, right_unit);
                    assert_eq!(left_tz, right_tz);
                }
            }
            ExpectedCast::NoValue => {
                let actual_value = actual_result.expect("Expected success but got error");

                assert!(
                    actual_value.is_none(),
                    "Expected no cast value, but got {actual_value:?}"
                );
            }
        }
    }

    #[test]
    fn test_try_cast_literal_to_timestamp() {
        // same timestamp
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampNanosecond(Some(123456), None),
            &DataType::Timestamp(TimeUnit::Nanosecond, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(
            new_scalar,
            ScalarValue::TimestampNanosecond(Some(123456), None)
        );

        // TimestampNanosecond to TimestampMicrosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampNanosecond(Some(123456), None),
            &DataType::Timestamp(TimeUnit::Microsecond, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(
            new_scalar,
            ScalarValue::TimestampMicrosecond(Some(123), None)
        );

        // TimestampNanosecond to TimestampMillisecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampNanosecond(Some(123456), None),
            &DataType::Timestamp(TimeUnit::Millisecond, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(new_scalar, ScalarValue::TimestampMillisecond(Some(0), None));

        // TimestampNanosecond to TimestampSecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampNanosecond(Some(123456), None),
            &DataType::Timestamp(TimeUnit::Second, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(new_scalar, ScalarValue::TimestampSecond(Some(0), None));

        // TimestampMicrosecond to TimestampNanosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMicrosecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Nanosecond, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(
            new_scalar,
            ScalarValue::TimestampNanosecond(Some(123000), None)
        );

        // TimestampMicrosecond to TimestampMillisecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMicrosecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Millisecond, None),
        )
        .unwrap()
        .unwrap();

        assert_eq!(new_scalar, ScalarValue::TimestampMillisecond(Some(0), None));

        // TimestampMicrosecond to TimestampSecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMicrosecond(Some(123456789), None),
            &DataType::Timestamp(TimeUnit::Second, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(new_scalar, ScalarValue::TimestampSecond(Some(123), None));

        // TimestampMillisecond to TimestampNanosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMillisecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Nanosecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(
            new_scalar,
            ScalarValue::TimestampNanosecond(Some(123000000), None)
        );

        // TimestampMillisecond to TimestampMicrosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMillisecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Microsecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(
            new_scalar,
            ScalarValue::TimestampMicrosecond(Some(123000), None)
        );
        // TimestampMillisecond to TimestampSecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampMillisecond(Some(123456789), None),
            &DataType::Timestamp(TimeUnit::Second, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(new_scalar, ScalarValue::TimestampSecond(Some(123456), None));

        // TimestampSecond to TimestampNanosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampSecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Nanosecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(
            new_scalar,
            ScalarValue::TimestampNanosecond(Some(123000000000), None)
        );

        // TimestampSecond to TimestampMicrosecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampSecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Microsecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(
            new_scalar,
            ScalarValue::TimestampMicrosecond(Some(123000000), None)
        );

        // TimestampSecond to TimestampMillisecond
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampSecond(Some(123), None),
            &DataType::Timestamp(TimeUnit::Millisecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(
            new_scalar,
            ScalarValue::TimestampMillisecond(Some(123000), None)
        );

        // overflow
        let new_scalar = try_cast_literal_to_type(
            &ScalarValue::TimestampSecond(Some(i64::MAX), None),
            &DataType::Timestamp(TimeUnit::Millisecond, None),
        )
        .unwrap()
        .unwrap();
        assert_eq!(new_scalar, ScalarValue::TimestampMillisecond(None, None));
    }
}