1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Collection of utility functions that are leveraged by the query optimizer rules
use crate::{OptimizerConfig, OptimizerRule};
use datafusion_common::DataFusionError;
use datafusion_common::{plan_err, Column, DFSchemaRef};
use datafusion_common::{DFSchema, Result};
use datafusion_expr::expr::{Alias, BinaryExpr};
use datafusion_expr::expr_rewriter::{replace_col, strip_outer_reference};
use datafusion_expr::{
and,
logical_plan::{Filter, LogicalPlan},
Expr, Operator,
};
use log::{debug, trace};
use std::collections::{BTreeSet, HashMap};
use std::sync::Arc;
/// Convenience rule for writing optimizers: recursively invoke
/// optimize on plan's children and then return a node of the same
/// type. Useful for optimizer rules which want to leave the type
/// of plan unchanged but still apply to the children.
/// This also handles the case when the `plan` is a [`LogicalPlan::Explain`].
///
/// Returning `Ok(None)` indicates that the plan can't be optimized by the `optimizer`.
pub fn optimize_children(
optimizer: &impl OptimizerRule,
plan: &LogicalPlan,
config: &dyn OptimizerConfig,
) -> Result<Option<LogicalPlan>> {
let mut new_inputs = Vec::with_capacity(plan.inputs().len());
let mut plan_is_changed = false;
for input in plan.inputs() {
let new_input = optimizer.try_optimize(input, config)?;
plan_is_changed = plan_is_changed || new_input.is_some();
new_inputs.push(new_input.unwrap_or_else(|| input.clone()))
}
if plan_is_changed {
Ok(Some(plan.with_new_inputs(&new_inputs)?))
} else {
Ok(None)
}
}
/// Splits a conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
///
/// See [`split_conjunction_owned`] for more details and an example.
pub fn split_conjunction(expr: &Expr) -> Vec<&Expr> {
split_conjunction_impl(expr, vec![])
}
fn split_conjunction_impl<'a>(expr: &'a Expr, mut exprs: Vec<&'a Expr>) -> Vec<&'a Expr> {
match expr {
Expr::BinaryExpr(BinaryExpr {
right,
op: Operator::And,
left,
}) => {
let exprs = split_conjunction_impl(left, exprs);
split_conjunction_impl(right, exprs)
}
Expr::Alias(Alias { expr, .. }) => split_conjunction_impl(expr, exprs),
other => {
exprs.push(other);
exprs
}
}
}
/// Splits an owned conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
///
/// This is often used to "split" filter expressions such as `col1 = 5
/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit};
/// # use datafusion_optimizer::utils::split_conjunction_owned;
/// // a=1 AND b=2
/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
/// col("a").eq(lit(1)),
/// col("b").eq(lit(2)),
/// ];
///
/// // use split_conjunction_owned to split them
/// assert_eq!(split_conjunction_owned(expr), split);
/// ```
pub fn split_conjunction_owned(expr: Expr) -> Vec<Expr> {
split_binary_owned(expr, Operator::And)
}
/// Splits an owned binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
///
/// This is often used to "split" expressions such as `col1 = 5
/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit, Operator};
/// # use datafusion_optimizer::utils::split_binary_owned;
/// # use std::ops::Add;
/// // a=1 + b=2
/// let expr = col("a").eq(lit(1)).add(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
/// col("a").eq(lit(1)),
/// col("b").eq(lit(2)),
/// ];
///
/// // use split_binary_owned to split them
/// assert_eq!(split_binary_owned(expr, Operator::Plus), split);
/// ```
pub fn split_binary_owned(expr: Expr, op: Operator) -> Vec<Expr> {
split_binary_owned_impl(expr, op, vec![])
}
fn split_binary_owned_impl(
expr: Expr,
operator: Operator,
mut exprs: Vec<Expr>,
) -> Vec<Expr> {
match expr {
Expr::BinaryExpr(BinaryExpr { right, op, left }) if op == operator => {
let exprs = split_binary_owned_impl(*left, operator, exprs);
split_binary_owned_impl(*right, operator, exprs)
}
Expr::Alias(Alias { expr, .. }) => {
split_binary_owned_impl(*expr, operator, exprs)
}
other => {
exprs.push(other);
exprs
}
}
}
/// Splits an binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
///
/// See [`split_binary_owned`] for more details and an example.
pub fn split_binary(expr: &Expr, op: Operator) -> Vec<&Expr> {
split_binary_impl(expr, op, vec![])
}
fn split_binary_impl<'a>(
expr: &'a Expr,
operator: Operator,
mut exprs: Vec<&'a Expr>,
) -> Vec<&'a Expr> {
match expr {
Expr::BinaryExpr(BinaryExpr { right, op, left }) if *op == operator => {
let exprs = split_binary_impl(left, operator, exprs);
split_binary_impl(right, operator, exprs)
}
Expr::Alias(Alias { expr, .. }) => split_binary_impl(expr, operator, exprs),
other => {
exprs.push(other);
exprs
}
}
}
/// Combines an array of filter expressions into a single filter
/// expression consisting of the input filter expressions joined with
/// logical AND.
///
/// Returns None if the filters array is empty.
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit};
/// # use datafusion_optimizer::utils::conjunction;
/// // a=1 AND b=2
/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
/// col("a").eq(lit(1)),
/// col("b").eq(lit(2)),
/// ];
///
/// // use conjunction to join them together with `AND`
/// assert_eq!(conjunction(split), Some(expr));
/// ```
pub fn conjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
filters.into_iter().reduce(|accum, expr| accum.and(expr))
}
/// Combines an array of filter expressions into a single filter
/// expression consisting of the input filter expressions joined with
/// logical OR.
///
/// Returns None if the filters array is empty.
pub fn disjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
filters.into_iter().reduce(|accum, expr| accum.or(expr))
}
/// returns a new [LogicalPlan] that wraps `plan` in a [LogicalPlan::Filter] with
/// its predicate be all `predicates` ANDed.
pub fn add_filter(plan: LogicalPlan, predicates: &[&Expr]) -> Result<LogicalPlan> {
// reduce filters to a single filter with an AND
let predicate = predicates
.iter()
.skip(1)
.fold(predicates[0].clone(), |acc, predicate| {
and(acc, (*predicate).to_owned())
});
Ok(LogicalPlan::Filter(Filter::try_new(
predicate,
Arc::new(plan),
)?))
}
/// Looks for correlating expressions: for example, a binary expression with one field from the subquery, and
/// one not in the subquery (closed upon from outer scope)
///
/// # Arguments
///
/// * `exprs` - List of expressions that may or may not be joins
///
/// # Return value
///
/// Tuple of (expressions containing joins, remaining non-join expressions)
pub fn find_join_exprs(exprs: Vec<&Expr>) -> Result<(Vec<Expr>, Vec<Expr>)> {
let mut joins = vec![];
let mut others = vec![];
for filter in exprs.into_iter() {
// If the expression contains correlated predicates, add it to join filters
if filter.contains_outer() {
if !matches!(filter, Expr::BinaryExpr(BinaryExpr{ left, op: Operator::Eq, right }) if left.eq(right))
{
joins.push(strip_outer_reference((*filter).clone()));
}
} else {
others.push((*filter).clone());
}
}
Ok((joins, others))
}
/// Returns the first (and only) element in a slice, or an error
///
/// # Arguments
///
/// * `slice` - The slice to extract from
///
/// # Return value
///
/// The first element, or an error
pub fn only_or_err<T>(slice: &[T]) -> Result<&T> {
match slice {
[it] => Ok(it),
[] => plan_err!("No items found!"),
_ => plan_err!("More than one item found!"),
}
}
/// merge inputs schema into a single schema.
pub fn merge_schema(inputs: Vec<&LogicalPlan>) -> DFSchema {
if inputs.len() == 1 {
inputs[0].schema().clone().as_ref().clone()
} else {
inputs.iter().map(|input| input.schema()).fold(
DFSchema::empty(),
|mut lhs, rhs| {
lhs.merge(rhs);
lhs
},
)
}
}
pub(crate) fn collect_subquery_cols(
exprs: &[Expr],
subquery_schema: DFSchemaRef,
) -> Result<BTreeSet<Column>> {
exprs.iter().try_fold(BTreeSet::new(), |mut cols, expr| {
let mut using_cols: Vec<Column> = vec![];
for col in expr.to_columns()?.into_iter() {
if subquery_schema.has_column(&col) {
using_cols.push(col);
}
}
cols.extend(using_cols);
Result::<_>::Ok(cols)
})
}
pub(crate) fn replace_qualified_name(
expr: Expr,
cols: &BTreeSet<Column>,
subquery_alias: &str,
) -> Result<Expr> {
let alias_cols: Vec<Column> = cols
.iter()
.map(|col| {
Column::from_qualified_name(format!("{}.{}", subquery_alias, col.name))
})
.collect();
let replace_map: HashMap<&Column, &Column> =
cols.iter().zip(alias_cols.iter()).collect();
replace_col(expr, &replace_map)
}
/// Log the plan in debug/tracing mode after some part of the optimizer runs
pub fn log_plan(description: &str, plan: &LogicalPlan) {
debug!("{description}:\n{}\n", plan.display_indent());
trace!("{description}::\n{}\n", plan.display_indent_schema());
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::datatypes::DataType;
use datafusion_common::Column;
use datafusion_expr::expr::Cast;
use datafusion_expr::{col, lit, utils::expr_to_columns};
use std::collections::HashSet;
#[test]
fn test_split_conjunction() {
let expr = col("a");
let result = split_conjunction(&expr);
assert_eq!(result, vec![&expr]);
}
#[test]
fn test_split_conjunction_two() {
let expr = col("a").eq(lit(5)).and(col("b"));
let expr1 = col("a").eq(lit(5));
let expr2 = col("b");
let result = split_conjunction(&expr);
assert_eq!(result, vec![&expr1, &expr2]);
}
#[test]
fn test_split_conjunction_alias() {
let expr = col("a").eq(lit(5)).and(col("b").alias("the_alias"));
let expr1 = col("a").eq(lit(5));
let expr2 = col("b"); // has no alias
let result = split_conjunction(&expr);
assert_eq!(result, vec![&expr1, &expr2]);
}
#[test]
fn test_split_conjunction_or() {
let expr = col("a").eq(lit(5)).or(col("b"));
let result = split_conjunction(&expr);
assert_eq!(result, vec![&expr]);
}
#[test]
fn test_split_binary_owned() {
let expr = col("a");
assert_eq!(split_binary_owned(expr.clone(), Operator::And), vec![expr]);
}
#[test]
fn test_split_binary_owned_two() {
assert_eq!(
split_binary_owned(col("a").eq(lit(5)).and(col("b")), Operator::And),
vec![col("a").eq(lit(5)), col("b")]
);
}
#[test]
fn test_split_binary_owned_different_op() {
let expr = col("a").eq(lit(5)).or(col("b"));
assert_eq!(
// expr is connected by OR, but pass in AND
split_binary_owned(expr.clone(), Operator::And),
vec![expr]
);
}
#[test]
fn test_split_conjunction_owned() {
let expr = col("a");
assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
}
#[test]
fn test_split_conjunction_owned_two() {
assert_eq!(
split_conjunction_owned(col("a").eq(lit(5)).and(col("b"))),
vec![col("a").eq(lit(5)), col("b")]
);
}
#[test]
fn test_split_conjunction_owned_alias() {
assert_eq!(
split_conjunction_owned(col("a").eq(lit(5)).and(col("b").alias("the_alias"))),
vec![
col("a").eq(lit(5)),
// no alias on b
col("b"),
]
);
}
#[test]
fn test_conjunction_empty() {
assert_eq!(conjunction(vec![]), None);
}
#[test]
fn test_conjunction() {
// `[A, B, C]`
let expr = conjunction(vec![col("a"), col("b"), col("c")]);
// --> `(A AND B) AND C`
assert_eq!(expr, Some(col("a").and(col("b")).and(col("c"))));
// which is different than `A AND (B AND C)`
assert_ne!(expr, Some(col("a").and(col("b").and(col("c")))));
}
#[test]
fn test_disjunction_empty() {
assert_eq!(disjunction(vec![]), None);
}
#[test]
fn test_disjunction() {
// `[A, B, C]`
let expr = disjunction(vec![col("a"), col("b"), col("c")]);
// --> `(A OR B) OR C`
assert_eq!(expr, Some(col("a").or(col("b")).or(col("c"))));
// which is different than `A OR (B OR C)`
assert_ne!(expr, Some(col("a").or(col("b").or(col("c")))));
}
#[test]
fn test_split_conjunction_owned_or() {
let expr = col("a").eq(lit(5)).or(col("b"));
assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
}
#[test]
fn test_collect_expr() -> Result<()> {
let mut accum: HashSet<Column> = HashSet::new();
expr_to_columns(
&Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
&mut accum,
)?;
expr_to_columns(
&Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
&mut accum,
)?;
assert_eq!(1, accum.len());
assert!(accum.contains(&Column::from_name("a")));
Ok(())
}
}