1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
use super::{arguments::QueryParams, graphql::GraphqlError};
use fuel_indexer_database::DbType;
use std::{collections::HashMap, fmt::Display};
/// Represents a part of a user query. Each part can be a key-value pair
/// describing an entity field and its corresponding database table, or a
/// boundary for a nested object; opening boundaries contain a string to
/// be used as a JSON key in the final database query.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum QueryElement {
Field { key: String, value: String },
ObjectOpeningBoundary { key: String },
ObjectClosingBoundary,
}
/// Represents the tables and columns used in a particular database join.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct JoinCondition {
pub referencing_key_table: String,
pub referencing_key_col: String,
pub primary_key_table: String,
pub primary_key_col: String,
}
impl Display for JoinCondition {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{}.{} = {}.{}",
self.referencing_key_table,
self.referencing_key_col,
self.primary_key_table,
self.primary_key_col
)
}
}
/// Represents a node in a directed acyclic graph (DAG) and used to
/// allow for the sorting of table joins.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct QueryJoinNode {
pub dependencies: HashMap<String, JoinCondition>,
pub dependents: HashMap<String, JoinCondition>,
}
/// Represents the full amount of requested information from a user query.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct UserQuery {
/// The individal parts or tokens of what will become a selection statement.
pub elements: Vec<QueryElement>,
/// Contains information about the dependents and dependencies of a particular table join.
pub joins: HashMap<String, QueryJoinNode>,
/// The full isolated namespace in which an indexer's entity tables reside.
pub namespace_identifier: String,
/// The top-level entity contained in a query.
pub entity_name: String,
/// The full set of parameters that can be applied to a query.
pub query_params: QueryParams,
// An optional user-suppled alias for an entity field.
pub alias: Option<String>,
}
impl UserQuery {
/// Returns the query as a database-specific SQL query.
pub fn to_sql(&mut self, db_type: &DbType) -> Result<String, GraphqlError> {
// Different database solutions have unique ways of
// constructing JSON-formatted queries and results.
match db_type {
DbType::Postgres => {
let selections = self.parse_query_elements_into_selections(db_type);
let selections_str = selections.join("");
let sorted_joins = self.get_topologically_sorted_joins();
let mut last_seen_primary_key_table = "".to_string();
let mut joins: Vec<String> = Vec::new();
// For each clause in the list of topologically-sorted joins,
// check if the clause's primary key table matches the last primary key
// key table that was seen in this loop. If so, add the join condition to
// the last join condition; if not, push this clause into the list of joins.
// This is required because Postgres does not allow for joined primary key tables
// to be mentioned multiple times.
for sj in sorted_joins {
if sj.primary_key_table == last_seen_primary_key_table {
if let Some(elem) = joins.last_mut() {
*elem = format!("{elem} AND {sj}")
}
} else {
joins.push(format!(
"INNER JOIN {} ON {}",
sj.primary_key_table, sj
));
last_seen_primary_key_table = sj.primary_key_table;
}
}
let joins_str = if !joins.is_empty() {
joins.join(" ")
} else {
"".to_string()
};
// If there's a limit applied to the query, then we need to create a query
// with pagination info. Otherwise, we can return the entire result set.
let query: String = if let Some(limit) = self.query_params.limit {
// Paginated queries must have an order applied to at least one field.
if !self.query_params.sorts.is_empty() {
self.create_query_with_pageinfo(
db_type,
selections_str,
joins_str,
limit,
)
} else {
return Err(GraphqlError::UnorderedPaginatedQuery);
}
} else {
format!(
"SELECT json_build_object({}) FROM {}.{} {} {} {}",
selections_str,
self.namespace_identifier,
self.entity_name,
joins_str,
self.query_params.get_filtering_expression(db_type),
self.query_params.get_ordering_modififer(db_type)
)
};
Ok(query)
}
}
}
/// Returns a SQL query that contains the requested results and a PageInfo object.
fn create_query_with_pageinfo(
&self,
db_type: &DbType,
selections_str: String,
joins_str: String,
limit: u64,
) -> String {
// In order to create information about pagination, we need to calculate
// values according to the amount of records, current offset, and requested
// limit. To avoid sending additional queries for every request sent to
// the API, we leverage a common table expression (CTE) which is a table
// that exists only for the duration of the query and allows us to refer
// to its result set.
match db_type {
db_type @ DbType::Postgres => {
let json_selections_str =
self.get_json_selections_from_cte(db_type).join(",");
let selection_cte = format!(
r#"WITH selection_cte AS (
SELECT json_build_object({}) AS {}
FROM {}.{}
{}
{}
{}),"#,
selections_str,
self.entity_name,
self.namespace_identifier,
self.entity_name,
joins_str,
self.query_params.get_filtering_expression(db_type),
self.query_params.get_ordering_modififer(db_type),
);
let total_count_cte =
"total_count_cte AS (SELECT COUNT(*) as count FROM selection_cte)"
.to_string();
let offset = self.query_params.offset.unwrap_or(0);
let alias = self.alias.clone().unwrap_or(self.entity_name.clone());
let selection_query = format!(
r#"SELECT json_build_object(
'page_info', json_build_object(
'has_next_page', (({limit} + {offset}) < (SELECT count from total_count_cte)),
'limit', {limit},
'offset', {offset},
'pages', ceil((SELECT count from total_count_cte)::float / {limit}::float),
'total_count', (SELECT count from total_count_cte)
),
'{alias}', (
SELECT json_agg(item)
FROM (
SELECT {json_selections_str} FROM selection_cte
LIMIT {limit} OFFSET {offset}
) item
)
);"#
);
[selection_cte, total_count_cte, selection_query].join("\n")
}
}
}
/// Parses QueryElements into a list of strings that can be used to create a selection statement.
///
/// Each database type should have a way to return result sets as a JSON-friendly structure,
/// as JSON is the most used format for GraphQL responses.
fn parse_query_elements_into_selections(&self, db_type: &DbType) -> Vec<String> {
let mut peekable_elements = self.elements.iter().peekable();
let mut selections = Vec::new();
match db_type {
DbType::Postgres => {
while let Some(e) = peekable_elements.next() {
match e {
// Set the key for this JSON element to the name of the entity field
// and the value to the corresponding database table so that it can
// be successfully retrieved.
QueryElement::Field { key, value } => {
selections.push(format!("'{key}', {value}"));
// If the next element is not a closing boundary, then a comma should
// be added so that the resultant SQL query can be properly constructed.
if let Some(next_element) = peekable_elements.peek() {
match next_element {
QueryElement::Field { .. }
| QueryElement::ObjectOpeningBoundary { .. } => {
selections.push(", ".to_string());
}
_ => {}
}
}
}
// If the element is an object opener boundary, then we need to set a
// key so that the recipient can properly refer to the nested object.
QueryElement::ObjectOpeningBoundary { key } => {
selections.push(format!("'{key}', json_build_object("))
}
QueryElement::ObjectClosingBoundary => {
selections.push(")".to_string());
if let Some(next_element) = peekable_elements.peek() {
match next_element {
QueryElement::Field { .. }
| QueryElement::ObjectOpeningBoundary { .. } => {
selections.push(", ".to_string());
}
_ => {}
}
}
}
}
}
}
}
selections
}
/// Returns a list of strings that can be used to select user-requested
/// elements from a query leveraging common table expressions.
fn get_json_selections_from_cte(&self, db_type: &DbType) -> Vec<String> {
let mut selections = Vec::new();
match db_type {
DbType::Postgres => {
let mut peekable_elements = self.elements.iter().peekable();
let mut nesting_level = 0;
while let Some(element) = peekable_elements.next() {
match element {
QueryElement::Field { key, .. } => {
selections.push(format!(
"{}->'{}' AS {}",
self.entity_name, key, key
));
}
QueryElement::ObjectOpeningBoundary { key } => {
selections.push(format!(
"{}->'{}' AS {}",
self.entity_name, key, key
));
nesting_level += 1;
// Since we've added the entire sub-object (and its potential
// sub-objects) to our selections, we can safely ignore all
// fields and objects until we've come back to the top level.
for inner_element in peekable_elements.by_ref() {
match inner_element {
QueryElement::ObjectOpeningBoundary { .. } => {
nesting_level += 1;
}
QueryElement::ObjectClosingBoundary => {
nesting_level -= 1;
if nesting_level == 0 {
break;
}
}
_ => {}
}
}
}
QueryElement::ObjectClosingBoundary => {}
}
}
}
}
selections
}
/// Returns table joins sorted in topological order.
///
/// Some databases (i.e Postgres) require that dependent tables be joined after the tables
/// the tables they depend upon, i.e. the tables needs to be topologically sorted.
fn get_topologically_sorted_joins(&mut self) -> Vec<JoinCondition> {
let mut start_nodes: Vec<String> = self
.joins
.iter()
.filter(|(_k, v)| v.dependencies.is_empty())
.map(|(k, _v)| k.clone())
.collect();
let mut sorted_joins: Vec<JoinCondition> = Vec::new();
// For each node that does not depend on another node, iterate through their dependents
// and remove current_node from their dependencies. If all the dependencies of a node
// have been removed, add it to start_nodes and start the process again.
while let Some(current_node) = start_nodes.pop() {
if let Some(node) = self.joins.get_mut(¤t_node) {
for (dependent_node, _) in node.clone().dependents.iter() {
if let Some(or) = self.joins.get_mut(dependent_node) {
if let Some(dependency) = or.dependencies.remove(¤t_node) {
sorted_joins.push(dependency);
if or.dependencies.is_empty() {
start_nodes.push(dependent_node.clone());
}
}
}
}
}
}
sorted_joins.into_iter().rev().collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::arguments::{Filter, FilterType, ParsedValue};
#[test]
fn test_user_query_parse_query_elements() {
let elements = vec![
QueryElement::Field {
key: "flat_field_key".to_string(),
value: "flat_value".to_string(),
},
QueryElement::ObjectOpeningBoundary {
key: "nested_object_key".to_string(),
},
QueryElement::Field {
key: "nested_field_key".to_string(),
value: "nested_field_value".to_string(),
},
QueryElement::ObjectClosingBoundary,
];
let uq = UserQuery {
elements,
joins: HashMap::new(),
namespace_identifier: "".to_string(),
entity_name: "".to_string(),
query_params: QueryParams::default(),
alias: None,
};
let expected = vec![
"'flat_field_key', flat_value".to_string(),
", ".to_string(),
"'nested_object_key', json_build_object(".to_string(),
"'nested_field_key', nested_field_value".to_string(),
")".to_string(),
];
assert_eq!(
expected,
uq.parse_query_elements_into_selections(&DbType::Postgres)
);
}
#[test]
fn test_user_query_to_sql() {
let elements = vec![
QueryElement::Field {
key: "hash".to_string(),
value: "name_ident.block.hash".to_string(),
},
QueryElement::ObjectOpeningBoundary {
key: "tx".to_string(),
},
QueryElement::Field {
key: "hash".to_string(),
value: "name_ident.tx.hash".to_string(),
},
QueryElement::ObjectClosingBoundary,
QueryElement::Field {
key: "height".to_string(),
value: "name_ident.block.height".to_string(),
},
];
let mut uq = UserQuery {
elements,
joins: HashMap::from([
(
"name_ident.block".to_string(),
QueryJoinNode {
dependencies: HashMap::new(),
dependents: HashMap::from([(
"name_ident.tx".to_string(),
JoinCondition {
referencing_key_table: "name_ident.tx".to_string(),
referencing_key_col: "block".to_string(),
primary_key_table: "name_ident.block".to_string(),
primary_key_col: "id".to_string(),
},
)]),
},
),
(
"name_ident.tx".to_string(),
QueryJoinNode {
dependents: HashMap::new(),
dependencies: HashMap::from([(
"name_ident.block".to_string(),
JoinCondition {
referencing_key_table: "name_ident.tx".to_string(),
referencing_key_col: "block".to_string(),
primary_key_table: "name_ident.block".to_string(),
primary_key_col: "id".to_string(),
},
)]),
},
),
]),
namespace_identifier: "name_ident".to_string(),
entity_name: "entity_name".to_string(),
query_params: QueryParams {
filters: vec![Filter {
fully_qualified_table_name: "name_ident.entity_name".to_string(),
filter_type: FilterType::IdSelection(ParsedValue::Number(1)),
}],
sorts: vec![],
offset: None,
limit: None,
},
alias: None,
};
let expected = "SELECT json_build_object('hash', name_ident.block.hash, 'tx', json_build_object('hash', name_ident.tx.hash), 'height', name_ident.block.height) FROM name_ident.entity_name INNER JOIN name_ident.block ON name_ident.tx.block = name_ident.block.id WHERE name_ident.entity_name.id = 1 "
.to_string();
assert_eq!(expected, uq.to_sql(&DbType::Postgres).unwrap());
}
}