1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
use std::sync::Arc;
use std::time::Duration;

use serde::ser::{Serialize, SerializeMap, SerializeSeq, Serializer};
use serde_json::json;

use crate::category::{Category, CategoryHandle, CategoryPairHandle};
use crate::category_color::CategoryColor;
use crate::counters::{Counter, CounterHandle};
use crate::cpu_delta::CpuDelta;
use crate::fast_hash_map::FastHashMap;
use crate::frame::{Frame, FrameInfo};
use crate::frame_table::{InternalFrame, InternalFrameLocation};
use crate::global_lib_table::{GlobalLibTable, LibraryHandle};
use crate::lib_mappings::LibMappings;
use crate::library_info::LibraryInfo;
use crate::process::{Process, ThreadHandle};
use crate::reference_timestamp::ReferenceTimestamp;
use crate::string_table::{GlobalStringIndex, GlobalStringTable};
use crate::thread::{ProcessHandle, Thread};
use crate::{MarkerSchema, MarkerTiming, ProfilerMarker, SymbolTable, Timestamp};

/// The sampling interval used during profile recording.
///
/// This doesn't have to match the actual delta between sample timestamps.
/// It just describes the intended interval.
///
/// For profiles without sampling data, this can be set to a meaningless
/// dummy value.
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct SamplingInterval {
    nanos: u64,
}

impl SamplingInterval {
    /// Create a sampling interval from a sampling frequency in Hz.
    ///
    /// Panics on zero or negative values.
    pub fn from_hz(samples_per_second: f32) -> Self {
        assert!(samples_per_second > 0.0);
        let nanos = (1_000_000_000.0 / samples_per_second) as u64;
        Self::from_nanos(nanos)
    }

    /// Create a sampling interval from a value in milliseconds.
    pub fn from_millis(millis: u64) -> Self {
        Self::from_nanos(millis * 1_000_000)
    }

    /// Create a sampling interval from a value in nanoseconds
    pub fn from_nanos(nanos: u64) -> Self {
        Self { nanos }
    }

    /// Convert the interval to nanoseconds.
    pub fn nanos(&self) -> u64 {
        self.nanos
    }

    /// Convert the interval to float seconds.
    pub fn as_secs_f64(&self) -> f64 {
        self.nanos as f64 / 1_000_000_000.0
    }
}

impl From<Duration> for SamplingInterval {
    fn from(duration: Duration) -> Self {
        Self::from_nanos(duration.as_nanos() as u64)
    }
}

/// A handle for an interned string, returned from [`Profile::intern_string`].
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct StringHandle(GlobalStringIndex);

/// Stores the profile data and can be serialized as JSON, via [`serde::Serialize`].
///
/// The profile data is organized into a list of processes with threads.
/// Each thread has its own samples and markers.
///
/// ```
/// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, FrameInfo, FrameFlags, SamplingInterval, Timestamp};
/// use std::time::SystemTime;
///
/// # fn write_profile(output_file: std::fs::File) -> Result<(), Box<dyn std::error::Error>> {
/// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
/// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
/// let thread = profile.add_thread(process, 54132000, Timestamp::from_millis_since_reference(0.0), true);
/// profile.set_thread_name(thread, "Main thread");
/// let stack = vec![
///     FrameInfo { frame: Frame::Label(profile.intern_string("Root node")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() },
///     FrameInfo { frame: Frame::Label(profile.intern_string("First callee")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() }
/// ];
/// profile.add_sample(thread, Timestamp::from_millis_since_reference(0.0), stack.into_iter(), CpuDelta::ZERO, 1);
///
/// let writer = std::io::BufWriter::new(output_file);
/// serde_json::to_writer(writer, &profile)?;
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct Profile {
    pub(crate) product: String,
    pub(crate) interval: SamplingInterval,
    pub(crate) global_libs: GlobalLibTable,
    pub(crate) kernel_libs: LibMappings<LibraryHandle>,
    pub(crate) categories: Vec<Category>, // append-only for stable CategoryHandles
    pub(crate) processes: Vec<Process>,   // append-only for stable ProcessHandles
    pub(crate) counters: Vec<Counter>,
    pub(crate) threads: Vec<Thread>, // append-only for stable ThreadHandles
    pub(crate) reference_timestamp: ReferenceTimestamp,
    pub(crate) string_table: GlobalStringTable,
    pub(crate) marker_schemas: FastHashMap<&'static str, MarkerSchema>,
    used_pids: FastHashMap<u32, u32>,
    used_tids: FastHashMap<u32, u32>,
}

impl Profile {
    /// Create a new profile.
    ///
    /// The `product` is the name of the main application which was profiled.
    /// The `reference_timestamp` is some arbitrary absolute timestamp which all
    /// other timestamps in the profile data are relative to. The `interval` is the intended
    /// time delta between samples.
    pub fn new(
        product: &str,
        reference_timestamp: ReferenceTimestamp,
        interval: SamplingInterval,
    ) -> Self {
        Profile {
            interval,
            product: product.to_string(),
            threads: Vec::new(),
            global_libs: GlobalLibTable::new(),
            kernel_libs: LibMappings::new(),
            reference_timestamp,
            processes: Vec::new(),
            string_table: GlobalStringTable::new(),
            marker_schemas: FastHashMap::default(),
            categories: vec![Category {
                name: "Other".to_string(),
                color: CategoryColor::Gray,
                subcategories: Vec::new(),
            }],
            used_pids: FastHashMap::default(),
            used_tids: FastHashMap::default(),
            counters: Vec::new(),
        }
    }

    /// Change the declared sampling interval.
    pub fn set_interval(&mut self, interval: SamplingInterval) {
        self.interval = interval;
    }

    /// Change the reference timestamp.
    pub fn set_reference_timestamp(&mut self, reference_timestamp: ReferenceTimestamp) {
        self.reference_timestamp = reference_timestamp;
    }

    /// Change the product name.
    pub fn set_product(&mut self, product: &str) {
        self.product = product.to_string();
    }

    /// Add a category and return its handle.
    ///
    /// Categories are used for stack frames and markers, as part of a "category pair".
    pub fn add_category(&mut self, name: &str, color: CategoryColor) -> CategoryHandle {
        let handle = CategoryHandle(self.categories.len() as u16);
        self.categories.push(Category {
            name: name.to_string(),
            color,
            subcategories: Vec::new(),
        });
        handle
    }

    /// Add a subcategory for a category, and return the "category pair" handle.
    pub fn add_subcategory(&mut self, category: CategoryHandle, name: &str) -> CategoryPairHandle {
        let subcategory = self.categories[category.0 as usize].add_subcategory(name.into());
        CategoryPairHandle(category, Some(subcategory))
    }

    /// Add an empty process. The name, pid and start time can be changed afterwards,
    /// but they are required here because they have to be present in the profile JSON.
    pub fn add_process(&mut self, name: &str, pid: u32, start_time: Timestamp) -> ProcessHandle {
        let pid = self.make_unique_pid(pid);
        let handle = ProcessHandle(self.processes.len());
        self.processes.push(Process::new(name, pid, start_time));
        handle
    }

    fn make_unique_pid(&mut self, pid: u32) -> String {
        Self::make_unique_pid_or_tid(&mut self.used_pids, pid)
    }

    fn make_unique_tid(&mut self, tid: u32) -> String {
        Self::make_unique_pid_or_tid(&mut self.used_tids, tid)
    }

    /// Appends ".1" / ".2" etc. to the pid or tid if needed.
    ///
    /// The map contains the next suffix for each pid/tid, or no entry if the pid/tid
    /// hasn't been used before and needs no suffix.
    fn make_unique_pid_or_tid(map: &mut FastHashMap<u32, u32>, id: u32) -> String {
        match map.entry(id) {
            std::collections::hash_map::Entry::Occupied(mut entry) => {
                let suffix = *entry.get();
                *entry.get_mut() += 1;
                format!("{id}.{suffix}")
            }
            std::collections::hash_map::Entry::Vacant(entry) => {
                entry.insert(1);
                format!("{id}")
            }
        }
    }

    /// Create a counter. Counters let you make graphs with a time axis and a Y axis. One example of a
    /// counter is memory usage.
    ///
    /// # Example
    ///
    /// ```
    /// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, SamplingInterval, Timestamp};
    /// use std::time::SystemTime;
    ///
    /// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
    /// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
    /// let memory_counter = profile.add_counter(process, "malloc", "Memory", "Amount of allocated memory");
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(0.0), 0.0, 0);
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(1.0), 1000.0, 2);
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(2.0), 800.0, 1);
    /// ```
    pub fn add_counter(
        &mut self,
        process: ProcessHandle,
        name: &str,
        category: &str,
        description: &str,
    ) -> CounterHandle {
        let handle = CounterHandle(self.counters.len());
        self.counters.push(Counter::new(
            name,
            category,
            description,
            process,
            self.processes[process.0].pid(),
        ));
        handle
    }

    /// Change the start time of a process.
    pub fn set_process_start_time(&mut self, process: ProcessHandle, start_time: Timestamp) {
        self.processes[process.0].set_start_time(start_time);
    }

    /// Set the end time of a process.
    pub fn set_process_end_time(&mut self, process: ProcessHandle, end_time: Timestamp) {
        self.processes[process.0].set_end_time(end_time);
    }

    /// Change the name of a process.
    pub fn set_process_name(&mut self, process: ProcessHandle, name: &str) {
        self.processes[process.0].set_name(name);
    }

    /// Get the [`LibraryHandle`] for a library. This handle is used in [`Profile::add_lib_mapping`]
    /// and in the pre-resolved [`Frame`] variants.
    ///
    /// Knowing the library information allows symbolication of native stacks once the
    /// profile is opened in the Firefox Profiler.
    pub fn add_lib(&mut self, library: LibraryInfo) -> LibraryHandle {
        self.global_libs.handle_for_lib(library)
    }

    /// Set the symbol table for a library.
    ///
    /// This symbol table can also be specified in the [`LibraryInfo`] which is given to
    /// [`Profile::add_lib`]. However, sometimes you may want to have the [`LibraryHandle`]
    /// for a library before you know about all its symbols. In those cases, you can call
    /// [`Profile::add_lib`] with `symbol_table` set to `None`, and then supply the symbol
    /// table afterwards.
    ///
    /// Symbol tables are optional.
    pub fn set_lib_symbol_table(&mut self, library: LibraryHandle, symbol_table: Arc<SymbolTable>) {
        self.global_libs.set_lib_symbol_table(library, symbol_table);
    }

    /// For a given process, define where in the virtual memory of this process the given library
    /// is mapped.
    ///
    /// Existing mappings which overlap with the range `start_avma..end_avma` will be removed.
    ///
    /// A single library can have multiple mappings in the same process.
    ///
    /// The new mapping will be respected by future [`Profile::add_sample`] calls, when resolving
    /// absolute frame addresses to library-relative addresses.
    pub fn add_lib_mapping(
        &mut self,
        process: ProcessHandle,
        lib: LibraryHandle,
        start_avma: u64,
        end_avma: u64,
        relative_address_at_start: u32,
    ) {
        self.processes[process.0].add_lib_mapping(
            lib,
            start_avma,
            end_avma,
            relative_address_at_start,
        );
    }

    /// Mark the library mapping at the specified start address in the specified process as
    /// unloaded, so that future calls to [`Profile::add_sample`] know about the removal.
    pub fn remove_lib_mapping(&mut self, process: ProcessHandle, start_avma: u64) {
        self.processes[process.0].remove_lib_mapping(start_avma);
    }

    /// Clear all library mappings in the specified process.
    pub fn clear_process_lib_mappings(&mut self, process: ProcessHandle) {
        self.processes[process.0].remove_all_lib_mappings();
    }

    /// Add a kernel library mapping. This allows symbolication of kernel stacks once the profile is
    /// opened in the Firefox Profiler. Kernel libraries are global and not tied to a process.
    ///
    /// Each kernel library covers an address range in the kernel address space, which is
    /// global across all processes. Future calls to [`Profile::add_sample`] with native
    /// frames resolve the frame's code address with respect to the currently loaded kernel
    /// and process libraries.
    pub fn add_kernel_lib_mapping(
        &mut self,
        lib: LibraryHandle,
        start_avma: u64,
        end_avma: u64,
        relative_address_at_start: u32,
    ) {
        self.kernel_libs
            .add_mapping(start_avma, end_avma, relative_address_at_start, lib);
    }

    /// Mark the kernel library at the specified start address as
    /// unloaded, so that future calls to [`Profile::add_sample`] know about the unloading.
    pub fn remove_kernel_lib_mapping(&mut self, start_avma: u64) {
        self.kernel_libs.remove_mapping(start_avma);
    }

    /// Add an empty thread to the specified process.
    pub fn add_thread(
        &mut self,
        process: ProcessHandle,
        tid: u32,
        start_time: Timestamp,
        is_main: bool,
    ) -> ThreadHandle {
        let tid = self.make_unique_tid(tid);
        let handle = ThreadHandle(self.threads.len());
        self.threads
            .push(Thread::new(process, tid, start_time, is_main));
        self.processes[process.0].add_thread(handle);
        handle
    }

    /// Change the name of a thread.
    pub fn set_thread_name(&mut self, thread: ThreadHandle, name: &str) {
        self.threads[thread.0].set_name(name);
    }

    /// Change the start time of a thread.
    pub fn set_thread_start_time(&mut self, thread: ThreadHandle, start_time: Timestamp) {
        self.threads[thread.0].set_start_time(start_time);
    }

    /// Set the end time of a thread.
    pub fn set_thread_end_time(&mut self, thread: ThreadHandle, end_time: Timestamp) {
        self.threads[thread.0].set_end_time(end_time);
    }

    /// Turn the string into in a [`StringHandle`], for use in [`Frame::Label`].
    pub fn intern_string(&mut self, s: &str) -> StringHandle {
        StringHandle(self.string_table.index_for_string(s))
    }

    /// Get the string for a string handle. This is sometimes useful when writing tests.
    ///
    /// Panics if the handle wasn't found, which can happen if you pass a handle
    /// from a different Profile instance.
    pub fn get_string(&self, handle: StringHandle) -> &str {
        self.string_table.get_string(handle.0).unwrap()
    }

    /// Add a sample to the given thread.
    ///
    /// The sample has a timestamp, a stack, a CPU delta, and a weight.
    ///
    /// The stack frames are supplied as an iterator. Every frame has an associated
    /// category pair.
    ///
    /// The CPU delta is the amount of CPU time that the CPU was busy with work for this
    /// thread since the previous sample. It should always be less than or equal the
    /// time delta between the sample timestamps.
    ///
    /// The weight affects the sample's stack's score in the call tree. You usually set
    /// this to 1. You can use weights greater than one if you want to combine multiple
    /// adjacent samples with the same stack into one sample, to save space. However,
    /// this discards any CPU deltas between the adjacent samples, so it's only really
    /// useful if no CPU time has occurred between the samples, and for that use case the
    /// [`Profile::add_sample_same_stack_zero_cpu`] method should be preferred.
    ///
    /// You can can also set the weight to something negative, such as -1, to create a
    /// "diff profile". For example, if you have partitioned your samples into "before"
    /// and "after" groups, you can use -1 for all "before" samples and 1 for all "after"
    /// samples, and the call tree will show you which stacks occur more frequently in
    /// the "after" part of the profile, by sorting those stacks to the top.
    pub fn add_sample(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        frames: impl Iterator<Item = FrameInfo>,
        cpu_delta: CpuDelta,
        weight: i32,
    ) {
        let stack_index = self.stack_index_for_frames(thread, frames);
        self.threads[thread.0].add_sample(timestamp, stack_index, cpu_delta, weight);
    }

    /// Add a sample with a CPU delta of zero. Internally, multiple consecutive
    /// samples with a delta of zero will be combined into one sample with an accumulated
    /// weight.
    pub fn add_sample_same_stack_zero_cpu(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        weight: i32,
    ) {
        self.threads[thread.0].add_sample_same_stack_zero_cpu(timestamp, weight);
    }

    /// Add an allocation or deallocation sample to the given thread. This is used
    /// to collect stacks showing where allocations and deallocations happened.
    ///
    /// When loading profiles with allocation samples in the Firefox Profiler, the
    /// UI will display a dropdown above the call tree to switch between regular
    /// samples and allocation samples.
    ///
    /// An allocation sample has a timestamp, a stack, a memory address, and an allocation size.
    ///
    /// The size should be in bytes, with positive values for allocations and negative
    /// values for deallocations.
    ///
    /// The memory address allows correlating the allocation and deallocation stacks of the
    /// same object. This lets the UI display just the stacks for objects which haven't
    /// been deallocated yet ("Retained memory").
    ///
    /// To avoid having to capture stacks for every single allocation, you can sample just
    /// a subset of allocations. The sampling should be done based on the allocation size
    /// ("probability per byte"). The decision whether to sample should be done at
    /// allocation time and remembered for the lifetime of the allocation, so that for
    /// each allocated object you either sample both its allocation and deallocation, or
    /// neither.
    ///
    /// The stack frames are supplied as an iterator. Every frame has an associated
    /// category pair.
    pub fn add_allocation_sample(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        frames: impl Iterator<Item = FrameInfo>,
        allocation_address: u64,
        allocation_size: i64,
    ) {
        // The profile format strictly separates sample data from different threads.
        // For allocation samples, this separation is a bit unfortunate, especially
        // when it comes to the "Retained Memory" panel which shows allocation stacks
        // for just objects that haven't been deallocated yet. This panel is per-thread,
        // and it needs to know about deallocations even if they happened on a different
        // thread from the allocation.
        // To resolve this conundrum, for now, we will put all allocation and deallocation
        // samples on a single thread per process, regardless of what thread they actually
        // happened on.
        // The Gecko profiler puts all allocation samples on the main thread, for example.
        // Here in fxprof-processed-profile, we just deem the first thread of each process
        // as the processes "allocation thread".
        let process_handle = self.threads[thread.0].process();
        let process = &self.processes[process_handle.0];
        let allocation_thread_handle = process.thread_handle_for_allocations().unwrap();
        let stack_index = self.stack_index_for_frames(allocation_thread_handle, frames);
        self.threads[allocation_thread_handle.0].add_allocation_sample(
            timestamp,
            stack_index,
            allocation_address,
            allocation_size,
        );
    }

    /// Add a marker to the given thread.
    pub fn add_marker<T: ProfilerMarker>(
        &mut self,
        thread: ThreadHandle,
        category: CategoryHandle,
        name: &str,
        marker: T,
        timing: MarkerTiming,
    ) {
        self.marker_schemas
            .entry(T::MARKER_TYPE_NAME)
            .or_insert_with(T::schema);
        self.threads[thread.0].add_marker(category, name, marker, timing, None);
    }

    /// Add a marker to the given thread, with a stack.
    pub fn add_marker_with_stack<T: ProfilerMarker>(
        &mut self,
        thread: ThreadHandle,
        category: CategoryHandle,
        name: &str,
        marker: T,
        timing: MarkerTiming,
        stack_frames: impl Iterator<Item = FrameInfo>,
    ) {
        self.marker_schemas
            .entry(T::MARKER_TYPE_NAME)
            .or_insert_with(T::schema);
        let stack_index = self.stack_index_for_frames(thread, stack_frames);
        self.threads[thread.0].add_marker(category, name, marker, timing, stack_index);
    }

    /// Add a data point to a counter. For a memory counter, `value_delta` is the number
    /// of bytes that have been allocated / deallocated since the previous counter sample, and
    /// `number_of_operations` is the number of `malloc` / `free` calls since the previous
    /// counter sample. Both numbers are deltas.
    ///
    /// The graph in the profiler UI will connect subsequent data points with diagonal lines.
    /// Counters are intended for values that are measured at a time-based sample rate; for example,
    /// you could add a counter sample once every millisecond with the current memory usage.
    ///
    /// Alternatively, you can emit a new data point only whenever the value changes.
    /// In that case you probably want to emit two values per change: one right before (with
    /// the old value) and one right at the timestamp of change (with the new value). This way
    /// you'll get more horizontal lines, and the diagonal line will be very short.
    pub fn add_counter_sample(
        &mut self,
        counter: CounterHandle,
        timestamp: Timestamp,
        value_delta: f64,
        number_of_operations_delta: u32,
    ) {
        self.counters[counter.0].add_sample(timestamp, value_delta, number_of_operations_delta)
    }

    // frames is ordered from caller to callee, i.e. root function first, pc last
    fn stack_index_for_frames(
        &mut self,
        thread: ThreadHandle,
        frames: impl Iterator<Item = FrameInfo>,
    ) -> Option<usize> {
        let thread = &mut self.threads[thread.0];
        let process = &mut self.processes[thread.process().0];
        let mut prefix = None;
        for frame_info in frames {
            let location = match frame_info.frame {
                Frame::InstructionPointer(ip) => {
                    process.convert_address(&mut self.global_libs, &mut self.kernel_libs, ip)
                }
                Frame::ReturnAddress(ra) => process.convert_address(
                    &mut self.global_libs,
                    &mut self.kernel_libs,
                    ra.saturating_sub(1),
                ),
                Frame::RelativeAddressFromInstructionPointer(lib_handle, relative_address) => {
                    let global_lib_index = self.global_libs.index_for_used_lib(lib_handle);
                    InternalFrameLocation::AddressInLib(relative_address, global_lib_index)
                }
                Frame::RelativeAddressFromReturnAddress(lib_handle, relative_address) => {
                    let global_lib_index = self.global_libs.index_for_used_lib(lib_handle);
                    let nudged_relative_address = relative_address.saturating_sub(1);
                    InternalFrameLocation::AddressInLib(nudged_relative_address, global_lib_index)
                }
                Frame::Label(string_index) => {
                    let thread_string_index =
                        thread.convert_string_index(&self.string_table, string_index.0);
                    InternalFrameLocation::Label(thread_string_index)
                }
            };
            let internal_frame = InternalFrame {
                location,
                flags: frame_info.flags,
                category_pair: frame_info.category_pair,
            };
            let frame_index = thread.frame_index_for_frame(internal_frame, &self.global_libs);
            prefix =
                Some(thread.stack_index_for_stack(prefix, frame_index, frame_info.category_pair));
        }
        prefix
    }

    /// Returns a flattened list of `ThreadHandle`s in the right order.
    ///
    // The processed profile format has all threads from all processes in a flattened threads list.
    // Each thread duplicates some information about its process, which allows the Firefox Profiler
    // UI to group threads from the same process.
    fn sorted_threads(&self) -> (Vec<ThreadHandle>, Vec<usize>) {
        let mut sorted_threads = Vec::with_capacity(self.threads.len());
        let mut first_thread_index_per_process = vec![0; self.processes.len()];

        let mut sorted_processes: Vec<_> = (0..self.processes.len()).map(ProcessHandle).collect();
        sorted_processes.sort_by(|a_handle, b_handle| {
            let a = &self.processes[a_handle.0];
            let b = &self.processes[b_handle.0];
            a.cmp_for_json_order(b)
        });

        for process in sorted_processes {
            let prev_len = sorted_threads.len();
            first_thread_index_per_process[process.0] = prev_len;
            sorted_threads.extend_from_slice(self.processes[process.0].threads());

            let sorted_threads_for_this_process = &mut sorted_threads[prev_len..];
            sorted_threads_for_this_process.sort_by(|a_handle, b_handle| {
                let a = &self.threads[a_handle.0];
                let b = &self.threads[b_handle.0];
                a.cmp_for_json_order(b)
            });
        }

        (sorted_threads, first_thread_index_per_process)
    }

    fn serializable_threads<'a>(
        &'a self,
        sorted_threads: &'a [ThreadHandle],
    ) -> SerializableProfileThreadsProperty<'a> {
        SerializableProfileThreadsProperty {
            threads: &self.threads,
            processes: &self.processes,
            categories: &self.categories,
            sorted_threads,
        }
    }

    fn serializable_counters<'a>(
        &'a self,
        first_thread_index_per_process: &'a [usize],
    ) -> SerializableProfileCountersProperty<'a> {
        SerializableProfileCountersProperty {
            counters: &self.counters,
            first_thread_index_per_process,
        }
    }

    fn contains_js_function(&self) -> bool {
        self.threads.iter().any(|t| t.contains_js_function())
    }
}

impl Serialize for Profile {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let (sorted_threads, first_thread_index_per_process) = self.sorted_threads();
        let mut map = serializer.serialize_map(None)?;
        map.serialize_entry("meta", &SerializableProfileMeta(self))?;
        map.serialize_entry("libs", &self.global_libs)?;
        map.serialize_entry("threads", &self.serializable_threads(&sorted_threads))?;
        map.serialize_entry("pages", &[] as &[()])?;
        map.serialize_entry("profilerOverhead", &[] as &[()])?;
        map.serialize_entry(
            "counters",
            &self.serializable_counters(&first_thread_index_per_process),
        )?;
        map.end()
    }
}

struct SerializableProfileMeta<'a>(&'a Profile);

impl<'a> Serialize for SerializableProfileMeta<'a> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut map = serializer.serialize_map(None)?;
        map.serialize_entry("categories", &self.0.categories)?;
        map.serialize_entry("debug", &false)?;
        map.serialize_entry(
            "extensions",
            &json!({
                "length": 0,
                "baseURL": [],
                "id": [],
                "name": [],
            }),
        )?;
        map.serialize_entry("interval", &(self.0.interval.as_secs_f64() * 1000.0))?;
        map.serialize_entry("preprocessedProfileVersion", &46)?;
        map.serialize_entry("processType", &0)?;
        map.serialize_entry("product", &self.0.product)?;
        map.serialize_entry(
            "sampleUnits",
            &json!({
                "time": "ms",
                "eventDelay": "ms",
                "threadCPUDelta": "µs",
            }),
        )?;
        map.serialize_entry("startTime", &self.0.reference_timestamp)?;
        map.serialize_entry("symbolicated", &false)?;
        map.serialize_entry("pausedRanges", &[] as &[()])?;
        map.serialize_entry("version", &24)?;
        map.serialize_entry("usesOnlyOneStackType", &(!self.0.contains_js_function()))?;
        map.serialize_entry("doesNotUseFrameImplementation", &true)?;
        map.serialize_entry("sourceCodeIsNotOnSearchfox", &true)?;

        let mut marker_schemas: Vec<MarkerSchema> =
            self.0.marker_schemas.values().cloned().collect();
        marker_schemas.sort_by_key(|schema| schema.type_name);
        map.serialize_entry("markerSchema", &marker_schemas)?;

        map.end()
    }
}

struct SerializableProfileThreadsProperty<'a> {
    threads: &'a [Thread],
    processes: &'a [Process],
    categories: &'a [Category],
    sorted_threads: &'a [ThreadHandle],
}

impl<'a> Serialize for SerializableProfileThreadsProperty<'a> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut seq = serializer.serialize_seq(Some(self.threads.len()))?;

        for thread in self.sorted_threads {
            let categories = &self.categories;
            let thread = &self.threads[thread.0];
            let process = &self.processes[thread.process().0];
            seq.serialize_element(&SerializableProfileThread(process, thread, categories))?;
        }

        seq.end()
    }
}

struct SerializableProfileCountersProperty<'a> {
    counters: &'a [Counter],
    first_thread_index_per_process: &'a [usize],
}

impl<'a> Serialize for SerializableProfileCountersProperty<'a> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut seq = serializer.serialize_seq(Some(self.counters.len()))?;

        for counter in self.counters {
            let main_thread_index = self.first_thread_index_per_process[counter.process().0];
            seq.serialize_element(&counter.as_serializable(main_thread_index))?;
        }

        seq.end()
    }
}

struct SerializableProfileThread<'a>(&'a Process, &'a Thread, &'a [Category]);

impl<'a> Serialize for SerializableProfileThread<'a> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let SerializableProfileThread(process, thread, categories) = self;
        let process_start_time = process.start_time();
        let process_end_time = process.end_time();
        let process_name = process.name();
        let pid = process.pid();
        thread.serialize_with(
            serializer,
            categories,
            process_start_time,
            process_end_time,
            process_name,
            pid,
        )
    }
}