Struct hickory_proto::rr::rdata::aaaa::AAAA

source ·
pub struct AAAA(pub Ipv6Addr);
Expand description

The DNS AAAA record type, an IPv6 address

Tuple Fields§

§0: Ipv6Addr

Implementations§

source§

impl AAAA

source

pub const fn new( a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16 ) -> Self

Construct a new AAAA record with the 128 bits of IPv6 address

Methods from Deref<Target = Ipv6Addr>§

source

pub const BITS: u32 = 128u32

1.30.0 · source

pub const LOCALHOST: Ipv6Addr = _

1.30.0 · source

pub const UNSPECIFIED: Ipv6Addr = _

1.0.0 · source

pub fn segments(&self) -> [u16; 8]

Returns the eight 16-bit segments that make up this address.

§Examples
use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
           [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1.7.0 · source

pub fn is_unspecified(&self) -> bool

Returns true for the special ‘unspecified’ address (::).

This property is defined in IETF RFC 4291.

§Examples
use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1.7.0 · source

pub fn is_loopback(&self) -> bool

Returns true if this is the loopback address (::1), as defined in IETF RFC 4291 section 2.5.3.

Contrary to IPv4, in IPv6 there is only one loopback address.

§Examples
use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
source

pub fn is_global(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if the address appears to be globally reachable as specified by the IANA IPv6 Special-Purpose Address Registry. Whether or not an address is practically reachable will depend on your network configuration.

Most IPv6 addresses are globally reachable; unless they are specifically defined as not globally reachable.

Non-exhaustive list of notable addresses that are not globally reachable:

For the complete overview of which addresses are globally reachable, see the table at the IANA IPv6 Special-Purpose Address Registry.

Note that an address having global scope is not the same as being globally reachable, and there is no direct relation between the two concepts: There exist addresses with global scope that are not globally reachable (for example unique local addresses), and addresses that are globally reachable without having global scope (multicast addresses with non-global scope).

§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

// Most IPv6 addresses are globally reachable:
assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);

// However some addresses have been assigned a special meaning
// that makes them not globally reachable. Some examples are:

// The unspecified address (`::`)
assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);

// The loopback address (`::1`)
assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);

// IPv4-mapped addresses (`::ffff:0:0/96`)
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);

// Addresses reserved for benchmarking (`2001:2::/48`)
assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);

// Addresses reserved for documentation (`2001:db8::/32`)
assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);

// Unique local addresses (`fc00::/7`)
assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);

// Unicast addresses with link-local scope (`fe80::/10`)
assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);

// For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
source

pub fn is_unique_local(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if this is a unique local address (fc00::/7).

This property is defined in IETF RFC 4193.

§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
source

pub fn is_unicast(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if this is a unicast address, as defined by IETF RFC 4291. Any address that is not a multicast address (ff00::/8) is unicast.

§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

// The unspecified and loopback addresses are unicast.
assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);

// Any address that is not a multicast address (`ff00::/8`) is unicast.
assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
🔬This is a nightly-only experimental API. (ip)

Returns true if the address is a unicast address with link-local scope, as defined in RFC 4291.

A unicast address has link-local scope if it has the prefix fe80::/10, as per RFC 4291 section 2.4. Note that this encompasses more addresses than those defined in RFC 4291 section 2.5.6, which describes “Link-Local IPv6 Unicast Addresses” as having the following stricter format:

| 10 bits  |         54 bits         |          64 bits           |
+----------+-------------------------+----------------------------+
|1111111010|           0             |       interface ID         |
+----------+-------------------------+----------------------------+

So while currently the only addresses with link-local scope an application will encounter are all in fe80::/64, this might change in the future with the publication of new standards. More addresses in fe80::/10 could be allocated, and those addresses will have link-local scope.

Also note that while RFC 4291 section 2.5.3 mentions about the loopback address (::1) that “it is treated as having Link-Local scope”, this does not mean that the loopback address actually has link-local scope and this method will return false on it.

§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

// The loopback address (`::1`) does not actually have link-local scope.
assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);

// Only addresses in `fe80::/10` have link-local scope.
assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);

// Addresses outside the stricter `fe80::/64` also have link-local scope.
assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
source

pub fn is_documentation(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if this is an address reserved for documentation (2001:db8::/32).

This property is defined in IETF RFC 3849.

§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
source

pub fn is_benchmarking(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if this is an address reserved for benchmarking (2001:2::/48).

This property is defined in IETF RFC 5180, where it is mistakenly specified as covering the range 2001:0200::/48. This is corrected in IETF RFC Errata 1752 to 2001:0002::/48.

#![feature(ip)]

use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
source

pub fn is_unicast_global(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if the address is a globally routable unicast address.

The following return false:

  • the loopback address
  • the link-local addresses
  • unique local addresses
  • the unspecified address
  • the address range reserved for documentation

This method returns true for site-local addresses as per RFC 4291 section 2.5.7

The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
be supported in new implementations (i.e., new implementations must treat this prefix as
Global Unicast).
§Examples
#![feature(ip)]

use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
source

pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope>

🔬This is a nightly-only experimental API. (ip)

Returns the address’s multicast scope if the address is multicast.

§Examples
#![feature(ip)]

use std::net::{Ipv6Addr, Ipv6MulticastScope};

assert_eq!(
    Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
    Some(Ipv6MulticastScope::Global)
);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1.7.0 · source

pub fn is_multicast(&self) -> bool

Returns true if this is a multicast address (ff00::/8).

This property is defined by IETF RFC 4291.

§Examples
use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
source

pub fn is_ipv4_mapped(&self) -> bool

🔬This is a nightly-only experimental API. (ip)

Returns true if the address is an IPv4-mapped address (::ffff:0:0/96).

IPv4-mapped addresses can be converted to their canonical IPv4 address with to_ipv4_mapped.

§Examples
#![feature(ip)]

use std::net::{Ipv4Addr, Ipv6Addr};

let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);

assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1.63.0 · source

pub fn to_ipv4_mapped(&self) -> Option<Ipv4Addr>

Converts this address to an IPv4 address if it’s an IPv4-mapped address, as defined in IETF RFC 4291 section 2.5.5.2, otherwise returns None.

::ffff:a.b.c.d becomes a.b.c.d. All addresses not starting with ::ffff will return None.

§Examples
use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
           Some(Ipv4Addr::new(192, 10, 2, 255)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1.0.0 · source

pub fn to_ipv4(&self) -> Option<Ipv4Addr>

Converts this address to an IPv4 address if it is either an IPv4-compatible address as defined in IETF RFC 4291 section 2.5.5.1, or an IPv4-mapped address as defined in IETF RFC 4291 section 2.5.5.2, otherwise returns None.

Note that this will return an IPv4 address for the IPv6 loopback address ::1. Use Ipv6Addr::to_ipv4_mapped to avoid this.

::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d. ::1 becomes 0.0.0.1. All addresses not starting with either all zeroes or ::ffff will return None.

§Examples
use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
           Some(Ipv4Addr::new(192, 10, 2, 255)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
           Some(Ipv4Addr::new(0, 0, 0, 1)));
1.75.0 · source

pub fn to_canonical(&self) -> IpAddr

Converts this address to an IpAddr::V4 if it is an IPv4-mapped addresses, otherwise it returns self wrapped in an IpAddr::V6.

§Examples
use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1.12.0 · source

pub fn octets(&self) -> [u8; 16]

Returns the sixteen eight-bit integers the IPv6 address consists of.

use std::net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
           [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);

Trait Implementations§

source§

impl<'r> BinDecodable<'r> for AAAA

source§

fn read(decoder: &mut BinDecoder<'r>) -> ProtoResult<Self>

Read the type from the stream
source§

fn from_bytes(bytes: &'r [u8]) -> ProtoResult<Self>

Returns the object in binary form
source§

impl BinEncodable for AAAA

source§

fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()>

Write the type to the stream
source§

fn to_bytes(&self) -> ProtoResult<Vec<u8>>

Returns the object in binary form
source§

impl Clone for AAAA

source§

fn clone(&self) -> AAAA

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for AAAA

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Deref for AAAA

§

type Target = Ipv6Addr

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<'de> Deserialize<'de> for AAAA

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for AAAA

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl From<AAAA> for Ipv6Addr

source§

fn from(aaaa: AAAA) -> Self

Converts to this type from the input type.
source§

impl From<Ipv6Addr> for AAAA

source§

fn from(aaaa: Ipv6Addr) -> Self

Converts to this type from the input type.
source§

impl FromStr for AAAA

§

type Err = AddrParseError

The associated error which can be returned from parsing.
source§

fn from_str(s: &str) -> Result<Self, AddrParseError>

Parses a string s to return a value of this type. Read more
source§

impl Hash for AAAA

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl PartialEq for AAAA

source§

fn eq(&self, other: &AAAA) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl RecordData for AAAA

source§

fn try_from_rdata(data: RData) -> Result<Self, RData>

Attempts to convert to this RecordData from the RData type, if it is not the correct type the original is returned
source§

fn try_borrow(data: &RData) -> Option<&Self>

Attempts to borrow this RecordData from the RData type, if it is not the correct type the original is returned
source§

fn record_type(&self) -> RecordType

Get the associated RecordType for the RecordData
source§

fn into_rdata(self) -> RData

Converts this RecordData into generic RecordData
source§

impl Serialize for AAAA

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl Copy for AAAA

source§

impl Eq for AAAA

source§

impl StructuralPartialEq for AAAA

Auto Trait Implementations§

§

impl Freeze for AAAA

§

impl RefUnwindSafe for AAAA

§

impl Send for AAAA

§

impl Sync for AAAA

§

impl Unpin for AAAA

§

impl UnwindSafe for AAAA

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,