leafwing_input_manager/user_input/gamepad.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
//! Gamepad inputs
use bevy::input::gamepad::{GamepadAxisChangedEvent, GamepadButtonChangedEvent, GamepadEvent};
use bevy::input::{Axis, ButtonInput};
use bevy::prelude::{
Events, Gamepad, GamepadAxis, GamepadAxisType, GamepadButton, GamepadButtonType, Gamepads,
Reflect, Res, ResMut, Vec2, World,
};
use leafwing_input_manager_macros::serde_typetag;
use serde::{Deserialize, Serialize};
use crate as leafwing_input_manager;
use crate::axislike::AxisDirection;
use crate::clashing_inputs::BasicInputs;
use crate::input_processing::{
AxisProcessor, DualAxisProcessor, WithAxisProcessingPipelineExt,
WithDualAxisProcessingPipelineExt,
};
use crate::user_input::UserInput;
use crate::InputControlKind;
use super::updating::{CentralInputStore, UpdatableInput};
use super::{Axislike, Buttonlike, DualAxislike};
/// Retrieves the first connected gamepad.
///
/// If no gamepad is connected, a synthetic gamepad with an ID of 0 is returned.
#[must_use]
pub fn find_gamepad(gamepads: &Gamepads) -> Gamepad {
gamepads.iter().next().unwrap_or(Gamepad { id: 0 })
}
/// Retrieves the current value of the specified `axis`.
#[must_use]
#[inline]
fn read_axis_value(
input_store: &CentralInputStore,
gamepad: Gamepad,
axis: GamepadAxisType,
) -> f32 {
let axis = GamepadAxis::new(gamepad, axis);
input_store.value(&axis)
}
/// Provides button-like behavior for a specific direction on a [`GamepadAxisType`].
///
/// By default, it reads from **any connected gamepad**.
/// Use the [`InputMap::set_gamepad`](crate::input_map::InputMap::set_gamepad) for specific ones.
///
/// ```rust,ignore
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use bevy::input::gamepad::GamepadEvent;
/// use leafwing_input_manager::prelude::*;
///
/// let mut app = App::new();
/// app.add_plugins(InputPlugin);
///
/// // Positive Y-axis movement on left stick
/// let input = GamepadControlDirection::LEFT_UP;
///
/// // Movement in the opposite direction doesn't activate the input
/// GamepadControlAxis::LEFT_Y.set_value(app.world_mut(), -1.0);
/// app.update();
/// assert!(!app.read_pressed(input));
///
/// // Movement in the chosen direction activates the input
/// GamepadControlAxis::LEFT_Y.set_value(app.world_mut(), 1.0);
/// app.update();
/// assert!(app.read_pressed(input));
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct GamepadControlDirection {
/// The axis that this input tracks.
pub axis: GamepadAxisType,
/// The direction of the axis to monitor (positive or negative).
pub side: AxisDirection,
}
impl GamepadControlDirection {
/// Creates a [`GamepadControlDirection`] triggered by a negative value on the specified `axis`.
#[inline]
pub const fn negative(axis: GamepadAxisType) -> Self {
let side = AxisDirection::Negative;
Self { axis, side }
}
/// Creates a [`GamepadControlDirection`] triggered by a positive value on the specified `axis`.
#[inline]
pub const fn positive(axis: GamepadAxisType) -> Self {
let side = AxisDirection::Positive;
Self { axis, side }
}
/// "Up" on the left analog stick (positive Y-axis movement).
pub const LEFT_UP: Self = Self::positive(GamepadAxisType::LeftStickY);
/// "Down" on the left analog stick (negative Y-axis movement).
pub const LEFT_DOWN: Self = Self::negative(GamepadAxisType::LeftStickY);
/// "Left" on the left analog stick (negative X-axis movement).
pub const LEFT_LEFT: Self = Self::negative(GamepadAxisType::LeftStickX);
/// "Right" on the left analog stick (positive X-axis movement).
pub const LEFT_RIGHT: Self = Self::positive(GamepadAxisType::LeftStickX);
/// "Up" on the right analog stick (positive Y-axis movement).
pub const RIGHT_UP: Self = Self::positive(GamepadAxisType::RightStickY);
/// "Down" on the right analog stick (negative Y-axis movement).
pub const RIGHT_DOWN: Self = Self::negative(GamepadAxisType::RightStickY);
/// "Left" on the right analog stick (negative X-axis movement).
pub const RIGHT_LEFT: Self = Self::negative(GamepadAxisType::RightStickX);
/// "Right" on the right analog stick (positive X-axis movement).
pub const RIGHT_RIGHT: Self = Self::positive(GamepadAxisType::RightStickX);
}
impl UserInput for GamepadControlDirection {
/// [`GamepadControlDirection`] acts as a virtual button.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::Button
}
/// [`GamepadControlDirection`] represents a simple virtual button.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Simple(Box::new(*self))
}
}
#[serde_typetag]
impl Buttonlike for GamepadControlDirection {
/// Checks if there is any recent stick movement along the specified direction.
#[must_use]
#[inline]
fn pressed(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> bool {
let value = read_axis_value(input_store, gamepad, self.axis);
self.side.is_active(value)
}
/// Sends a [`GamepadEvent::Axis`] event with a magnitude of 1.0 for the specified direction on the provided [`Gamepad`].
fn press_as_gamepad(&self, world: &mut World, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Axis(GamepadAxisChangedEvent {
gamepad,
axis_type: self.axis,
value: self.side.full_active_value(),
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
/// Sends a [`GamepadEvent::Axis`] event with a magnitude of 0.0 for the specified direction.
fn release_as_gamepad(&self, world: &mut World, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Axis(GamepadAxisChangedEvent {
gamepad,
axis_type: self.axis,
value: 0.0,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
}
impl UpdatableInput for GamepadAxis {
type SourceData = Axis<GamepadAxis>;
fn compute(
mut central_input_store: ResMut<CentralInputStore>,
source_data: Res<Self::SourceData>,
) {
for axis in source_data.devices() {
let value = source_data.get(*axis).unwrap_or_default();
central_input_store.update_axislike(*axis, value);
}
}
}
/// Unlike [`GamepadButtonType`], this struct represents a specific axis on a specific gamepad.
///
/// In the majority of cases, [`GamepadControlAxis`] or [`GamepadStick`] should be used instead.
impl UserInput for GamepadAxis {
fn kind(&self) -> InputControlKind {
InputControlKind::Axis
}
fn decompose(&self) -> BasicInputs {
BasicInputs::Composite(vec![
Box::new(GamepadControlDirection::negative(self.axis_type)),
Box::new(GamepadControlDirection::positive(self.axis_type)),
])
}
}
#[serde_typetag]
impl Axislike for GamepadAxis {
fn value(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> f32 {
read_axis_value(input_store, gamepad, self.axis_type)
}
}
/// A wrapper around a specific [`GamepadAxisType`] (e.g., left stick X-axis, right stick Y-axis).
///
/// By default, it reads from **any connected gamepad**.
/// Use the [`InputMap::set_gamepad`](crate::input_map::InputMap::set_gamepad) for specific ones.
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithAxisProcessingPipelineExt`] for details.
///
/// ```rust,ignore
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
///
/// let mut app = App::new();
/// app.add_plugins(InputPlugin);
///
/// // Y-axis movement on left stick
/// let input = GamepadControlAxis::LEFT_Y;
///
/// // Movement on the chosen axis activates the input
/// GamepadControlAxis::LEFT_Y.set_value(app.world_mut(), 1.0);
/// app.update();
/// assert_eq!(app.read_axis_value(input), 1.0);
///
/// // You can configure a processing pipeline (e.g., doubling the value)
/// let doubled = GamepadControlAxis::LEFT_Y.sensitivity(2.0);
/// assert_eq!(app.read_axis_value(doubled), 2.0);
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct GamepadControlAxis {
/// The wrapped axis.
pub(crate) axis: GamepadAxisType,
/// A processing pipeline that handles input values.
pub(crate) processors: Vec<AxisProcessor>,
}
impl GamepadControlAxis {
/// Creates a [`GamepadControlAxis`] for continuous input from the given axis.
/// No processing is applied to raw data from the gamepad.
#[inline]
pub const fn new(axis: GamepadAxisType) -> Self {
Self {
axis,
processors: Vec::new(),
}
}
/// The horizontal axis (X-axis) of the left stick.
/// No processing is applied to raw data from the gamepad.
pub const LEFT_X: Self = Self::new(GamepadAxisType::LeftStickX);
/// The vertical axis (Y-axis) of the left stick.
/// No processing is applied to raw data from the gamepad.
pub const LEFT_Y: Self = Self::new(GamepadAxisType::LeftStickY);
/// The left `Z` button. No processing is applied to raw data from the gamepad.
pub const LEFT_Z: Self = Self::new(GamepadAxisType::LeftZ);
/// The horizontal axis (X-axis) of the right stick.
/// No processing is applied to raw data from the gamepad.
pub const RIGHT_X: Self = Self::new(GamepadAxisType::RightStickX);
/// The vertical axis (Y-axis) of the right stick.
/// No processing is applied to raw data from the gamepad.
pub const RIGHT_Y: Self = Self::new(GamepadAxisType::RightStickY);
/// The right `Z` button. No processing is applied to raw data from the gamepad.
pub const RIGHT_Z: Self = Self::new(GamepadAxisType::RightZ);
}
impl UserInput for GamepadControlAxis {
/// [`GamepadControlAxis`] acts as an axis input.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::Axis
}
/// [`GamepadControlAxis`] represents a composition of two [`GamepadControlDirection`]s.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Composite(vec![
Box::new(GamepadControlDirection::negative(self.axis)),
Box::new(GamepadControlDirection::positive(self.axis)),
])
}
}
#[serde_typetag]
impl Axislike for GamepadControlAxis {
/// Retrieves the current value of this axis after processing by the associated processors.
#[must_use]
#[inline]
fn value(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> f32 {
let value = read_axis_value(input_store, gamepad, self.axis);
self.processors
.iter()
.fold(value, |value, processor| processor.process(value))
}
/// Sends a [`GamepadEvent::Axis`] event with the specified value on the provided [`Gamepad`].
fn set_value_as_gamepad(&self, world: &mut World, value: f32, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Axis(GamepadAxisChangedEvent {
gamepad,
axis_type: self.axis,
value,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
}
impl WithAxisProcessingPipelineExt for GamepadControlAxis {
#[inline]
fn reset_processing_pipeline(mut self) -> Self {
self.processors.clear();
self
}
#[inline]
fn replace_processing_pipeline(
mut self,
processors: impl IntoIterator<Item = AxisProcessor>,
) -> Self {
self.processors = processors.into_iter().collect();
self
}
#[inline]
fn with_processor(mut self, processor: impl Into<AxisProcessor>) -> Self {
self.processors.push(processor.into());
self
}
}
/// A gamepad stick (e.g., left stick and right stick).
///
/// By default, it reads from **any connected gamepad**.
/// Use the [`InputMap::set_gamepad`](crate::input_map::InputMap::set_gamepad) for specific ones.
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithDualAxisProcessingPipelineExt`] for details.
///
/// ```rust,ignore
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
///
/// let mut app = App::new();
/// app.add_plugins(InputPlugin);
///
/// // Left stick
/// let input = GamepadStick::LEFT;
///
/// // Movement on either axis activates the input
/// GamepadControlAxis::LEFT_Y.set_value(app.world_mut(), 1.0);
/// app.update();
/// assert_eq!(app.read_axis_values(input), [0.0, 1.0]);
///
/// // You can configure a processing pipeline (e.g., doubling the Y value)
/// let doubled = GamepadStick::LEFT.sensitivity_y(2.0);
/// assert_eq!(app.read_axis_values(doubled), [2.0]);
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct GamepadStick {
/// Horizontal movement of the stick.
pub(crate) x: GamepadAxisType,
/// Vertical movement of the stick.
pub(crate) y: GamepadAxisType,
/// A processing pipeline that handles input values.
pub(crate) processors: Vec<DualAxisProcessor>,
}
impl GamepadStick {
/// The left gamepad stick. No processing is applied to raw data from the gamepad.
pub const LEFT: Self = Self {
x: GamepadAxisType::LeftStickX,
y: GamepadAxisType::LeftStickY,
processors: Vec::new(),
};
/// The right gamepad stick. No processing is applied to raw data from the gamepad.
pub const RIGHT: Self = Self {
x: GamepadAxisType::RightStickX,
y: GamepadAxisType::RightStickY,
processors: Vec::new(),
};
}
impl UserInput for GamepadStick {
/// [`GamepadStick`] acts as a dual-axis input.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::DualAxis
}
/// [`GamepadStick`] represents a composition of four [`GamepadControlDirection`]s.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Composite(vec![
Box::new(GamepadControlDirection::negative(self.x)),
Box::new(GamepadControlDirection::positive(self.x)),
Box::new(GamepadControlDirection::negative(self.y)),
Box::new(GamepadControlDirection::positive(self.y)),
])
}
}
#[serde_typetag]
impl DualAxislike for GamepadStick {
/// Retrieves the current X and Y values of this stick after processing by the associated processors.
#[must_use]
#[inline]
fn axis_pair(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> Vec2 {
let x = read_axis_value(input_store, gamepad, self.x);
let y = read_axis_value(input_store, gamepad, self.y);
self.processors
.iter()
.fold(Vec2::new(x, y), |value, processor| processor.process(value))
}
/// Sends a [`GamepadEvent::Axis`] event with the specified values on the provided [`Gamepad`].
fn set_axis_pair_as_gamepad(&self, world: &mut World, value: Vec2, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Axis(GamepadAxisChangedEvent {
gamepad,
axis_type: self.x,
value: value.x,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
let event = GamepadEvent::Axis(GamepadAxisChangedEvent {
gamepad,
axis_type: self.y,
value: value.y,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
}
impl WithDualAxisProcessingPipelineExt for GamepadStick {
#[inline]
fn reset_processing_pipeline(mut self) -> Self {
self.processors.clear();
self
}
#[inline]
fn replace_processing_pipeline(
mut self,
processor: impl IntoIterator<Item = DualAxisProcessor>,
) -> Self {
self.processors = processor.into_iter().collect();
self
}
#[inline]
fn with_processor(mut self, processor: impl Into<DualAxisProcessor>) -> Self {
self.processors.push(processor.into());
self
}
}
/// Checks if the given [`GamepadButtonType`] is currently pressed.
#[must_use]
#[inline]
fn button_pressed(
input_store: &CentralInputStore,
gamepad: Gamepad,
button: GamepadButtonType,
) -> bool {
let button = GamepadButton::new(gamepad, button);
input_store.pressed(&button)
}
/// Retrieves the current value of the given [`GamepadButtonType`].
#[must_use]
#[inline]
fn button_value(
input_store: &CentralInputStore,
gamepad: Gamepad,
button: GamepadButtonType,
) -> f32 {
// TODO: consider providing more accurate data from trigger-like buttons
// This is part of https://github.com/Leafwing-Studios/leafwing-input-manager/issues/551
f32::from(button_pressed(input_store, gamepad, button))
}
impl UpdatableInput for GamepadButton {
type SourceData = ButtonInput<GamepadButton>;
fn compute(
mut central_input_store: ResMut<CentralInputStore>,
source_data: Res<Self::SourceData>,
) {
for key in source_data.get_pressed() {
central_input_store.update_buttonlike(*key, true);
}
for key in source_data.get_just_released() {
central_input_store.update_buttonlike(*key, false);
}
}
}
/// Unlike [`GamepadButtonType`], this struct represents a specific button on a specific gamepad.
///
/// In the majority of cases, [`GamepadButtonType`] should be used instead.
impl UserInput for GamepadButton {
fn kind(&self) -> InputControlKind {
InputControlKind::Button
}
fn decompose(&self) -> BasicInputs {
BasicInputs::Simple(Box::new(*self))
}
}
#[serde_typetag]
impl Buttonlike for GamepadButton {
/// WARNING: The supplied gamepad is ignored, as the button is already specific to a gamepad.
fn pressed(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> bool {
button_pressed(input_store, self.gamepad, self.button_type)
}
fn press(&self, world: &mut World) {
let event = GamepadEvent::Button(GamepadButtonChangedEvent {
gamepad: self.gamepad,
button_type: self.button_type,
value: 1.0,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
fn release(&self, world: &mut World) {
let event = GamepadEvent::Button(GamepadButtonChangedEvent {
gamepad: self.gamepad,
button_type: self.button_type,
value: 0.0,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
}
// Built-in support for Bevy's GamepadButtonType.
impl UserInput for GamepadButtonType {
/// [`GamepadButtonType`] acts as a button.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::Button
}
/// Creates a [`BasicInputs`] that only contains the [`GamepadButtonType`] itself,
/// as it represents a simple physical button.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Simple(Box::new(*self))
}
}
#[serde_typetag]
impl Buttonlike for GamepadButtonType {
/// Checks if the specified button is currently pressed down.
#[must_use]
#[inline]
fn pressed(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> bool {
button_pressed(input_store, gamepad, *self)
}
/// Sends a [`GamepadEvent::Button`] event with a magnitude of 1.0 in the direction defined by `self` on the provided [`Gamepad`].
fn press_as_gamepad(&self, world: &mut World, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Button(GamepadButtonChangedEvent {
gamepad,
button_type: *self,
value: 1.0,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
/// Sends a [`GamepadEvent::Button`] event with a magnitude of 0.0 in the direction defined by `self` on the provided [`Gamepad`].
fn release_as_gamepad(&self, world: &mut World, gamepad: Option<Gamepad>) {
let gamepad = gamepad.unwrap_or(find_gamepad(world.resource::<Gamepads>()));
let event = GamepadEvent::Button(GamepadButtonChangedEvent {
gamepad,
button_type: *self,
value: 0.0,
});
world.resource_mut::<Events<GamepadEvent>>().send(event);
}
}
/// A virtual single-axis control constructed by combining two [`GamepadButtonType`]s.
/// One button represents the negative direction (left for the X-axis, down for the Y-axis),
/// while the other represents the positive direction (right for the X-axis, up for the Y-axis).
///
/// By default, it reads from **any connected gamepad**.
/// Use the [`InputMap::set_gamepad`](crate::input_map::InputMap::set_gamepad) for specific ones.
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithAxisProcessingPipelineExt`] for details.
///
/// The raw value is determined based on the state of the associated buttons:
/// - `-1.0` if only the negative button is currently pressed.
/// - `1.0` if only the positive button is currently pressed.
/// - `0.0` if neither button is pressed, or both are pressed simultaneously.
///
/// ```rust,ignore
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
///
/// let mut app = App::new();
/// app.add_plugins(InputPlugin);
///
/// // Define a virtual Y-axis using D-pad "up" and "down" buttons
/// let axis = GamepadVirtualAxis::DPAD_Y;
///
/// // Pressing either button activates the input
/// GamepadButtonType::DPadUp.press(app.world_mut());
/// app.update();
/// assert_eq!(app.read_axis_values(axis), [1.0]);
///
/// // You can configure a processing pipeline (e.g., doubling the value)
/// let doubled = GamepadVirtualAxis::DPAD_Y.sensitivity(2.0);
/// assert_eq!(app.read_axis_values(doubled), [2.0]);
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct GamepadVirtualAxis {
/// The button that represents the negative direction.
pub(crate) negative: GamepadButtonType,
/// The button that represents the positive direction.
pub(crate) positive: GamepadButtonType,
/// A processing pipeline that handles input values.
pub(crate) processors: Vec<AxisProcessor>,
}
impl GamepadVirtualAxis {
/// Creates a new [`GamepadVirtualAxis`] with two given [`GamepadButtonType`]s.
/// No processing is applied to raw data from the gamepad.
#[inline]
pub const fn new(negative: GamepadButtonType, positive: GamepadButtonType) -> Self {
Self {
negative,
positive,
processors: Vec::new(),
}
}
/// The [`GamepadVirtualAxis`] using the horizontal D-Pad button mappings.
/// No processing is applied to raw data from the gamepad.
///
/// - [`GamepadButtonType::DPadLeft`] for negative direction.
/// - [`GamepadButtonType::DPadRight`] for positive direction.
pub const DPAD_X: Self = Self::new(GamepadButtonType::DPadLeft, GamepadButtonType::DPadRight);
/// The [`GamepadVirtualAxis`] using the vertical D-Pad button mappings.
/// No processing is applied to raw data from the gamepad.
///
/// - [`GamepadButtonType::DPadDown`] for negative direction.
/// - [`GamepadButtonType::DPadUp`] for positive direction.
pub const DPAD_Y: Self = Self::new(GamepadButtonType::DPadDown, GamepadButtonType::DPadUp);
/// The [`GamepadVirtualAxis`] using the horizontal action pad button mappings.
/// No processing is applied to raw data from the gamepad.
///
/// - [`GamepadButtonType::West`] for negative direction.
/// - [`GamepadButtonType::East`] for positive direction.
pub const ACTION_PAD_X: Self = Self::new(GamepadButtonType::West, GamepadButtonType::East);
/// The [`GamepadVirtualAxis`] using the vertical action pad button mappings.
/// No processing is applied to raw data from the gamepad.
///
/// - [`GamepadButtonType::South`] for negative direction.
/// - [`GamepadButtonType::North`] for positive direction.
pub const ACTION_PAD_Y: Self = Self::new(GamepadButtonType::South, GamepadButtonType::North);
}
impl UserInput for GamepadVirtualAxis {
/// [`GamepadVirtualAxis`] acts as an axis input.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::Axis
}
/// Returns the two [`GamepadButtonType`]s used by this axis.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Composite(vec![Box::new(self.negative), Box::new(self.positive)])
}
}
#[serde_typetag]
impl Axislike for GamepadVirtualAxis {
/// Retrieves the current value of this axis after processing by the associated processors.
#[must_use]
#[inline]
fn value(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> f32 {
let negative = button_value(input_store, gamepad, self.negative);
let positive = button_value(input_store, gamepad, self.positive);
let value = positive - negative;
self.processors
.iter()
.fold(value, |value, processor| processor.process(value))
}
/// Sends a [`GamepadEvent::Button`] event on the provided [`Gamepad`].
///
/// If the value is negative, the negative button is pressed.
/// If the value is positive, the positive button is pressed.
/// If the value is zero, neither button is pressed.
fn set_value_as_gamepad(&self, world: &mut World, value: f32, gamepad: Option<Gamepad>) {
if value < 0.0 {
self.negative.press_as_gamepad(world, gamepad);
} else if value > 0.0 {
self.positive.press_as_gamepad(world, gamepad);
}
}
}
impl WithAxisProcessingPipelineExt for GamepadVirtualAxis {
#[inline]
fn reset_processing_pipeline(mut self) -> Self {
self.processors.clear();
self
}
#[inline]
fn replace_processing_pipeline(
mut self,
processors: impl IntoIterator<Item = AxisProcessor>,
) -> Self {
self.processors = processors.into_iter().collect();
self
}
#[inline]
fn with_processor(mut self, processor: impl Into<AxisProcessor>) -> Self {
self.processors.push(processor.into());
self
}
}
/// A virtual dual-axis control constructed from four [`GamepadButtonType`]s.
/// Each button represents a specific direction (up, down, left, right),
/// functioning similarly to a directional pad (D-pad) on both X and Y axes,
/// and offering intermediate diagonals by means of two-button combinations.
///
/// By default, it reads from **any connected gamepad**.
/// Use the [`InputMap::set_gamepad`](crate::input_map::InputMap::set_gamepad) for specific ones.
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithDualAxisProcessingPipelineExt`] for details.
///
/// The raw axis values are determined based on the state of the associated buttons:
/// - `-1.0` if only the negative button is currently pressed (Down/Left).
/// - `1.0` if only the positive button is currently pressed (Up/Right).
/// - `0.0` if neither button is pressed, or both are pressed simultaneously.
///
/// ```rust,ignore
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
///
/// let mut app = App::new();
/// app.add_plugins(InputPlugin);
///
/// // Define a virtual D-pad using the physical D-pad buttons
/// let input = GamepadVirtualDPad::DPAD;
///
/// // Pressing a D-pad button activates the corresponding axis
/// GamepadButtonType::DPadUp.press(app.world_mut());
/// app.update();
/// assert_eq!(app.read_axis_values(input), [0.0, 1.0]);
///
/// // You can configure a processing pipeline (e.g., doubling the Y value)
/// let doubled = GamepadVirtualDPad::DPAD.sensitivity_y(2.0);
/// assert_eq!(app.read_axis_values(doubled), [0.0, 2.0]);
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct GamepadVirtualDPad {
/// The button for the upward direction.
pub(crate) up: GamepadButtonType,
/// The button for the downward direction.
pub(crate) down: GamepadButtonType,
/// The button for the leftward direction.
pub(crate) left: GamepadButtonType,
/// The button for the rightward direction.
pub(crate) right: GamepadButtonType,
/// A processing pipeline that handles input values.
pub(crate) processors: Vec<DualAxisProcessor>,
}
impl GamepadVirtualDPad {
/// Creates a new [`GamepadVirtualDPad`] with four given [`GamepadButtonType`]s.
/// Each button represents a specific direction (up, down, left, right).
#[inline]
pub const fn new(
up: GamepadButtonType,
down: GamepadButtonType,
left: GamepadButtonType,
right: GamepadButtonType,
) -> Self {
Self {
up,
down,
left,
right,
processors: Vec::new(),
}
}
/// Creates a new [`GamepadVirtualDPad`] using the common D-Pad button mappings.
///
/// - [`GamepadButtonType::DPadUp`] for upward direction.
/// - [`GamepadButtonType::DPadDown`] for downward direction.
/// - [`GamepadButtonType::DPadLeft`] for leftward direction.
/// - [`GamepadButtonType::DPadRight`] for rightward direction.
pub const DPAD: Self = Self::new(
GamepadButtonType::DPadUp,
GamepadButtonType::DPadDown,
GamepadButtonType::DPadLeft,
GamepadButtonType::DPadRight,
);
/// Creates a new [`GamepadVirtualDPad`] using the common action pad button mappings.
///
/// - [`GamepadButtonType::North`] for upward direction.
/// - [`GamepadButtonType::South`] for downward direction.
/// - [`GamepadButtonType::West`] for leftward direction.
/// - [`GamepadButtonType::East`] for rightward direction.
pub const ACTION_PAD: Self = Self::new(
GamepadButtonType::North,
GamepadButtonType::South,
GamepadButtonType::West,
GamepadButtonType::East,
);
}
impl UserInput for GamepadVirtualDPad {
/// [`GamepadVirtualDPad`] acts as a dual-axis input.
#[inline]
fn kind(&self) -> InputControlKind {
InputControlKind::DualAxis
}
/// Returns the four [`GamepadButtonType`]s used by this D-pad.
#[inline]
fn decompose(&self) -> BasicInputs {
BasicInputs::Composite(vec![
Box::new(self.up),
Box::new(self.down),
Box::new(self.left),
Box::new(self.right),
])
}
}
#[serde_typetag]
impl DualAxislike for GamepadVirtualDPad {
/// Retrieves the current X and Y values of this D-pad after processing by the associated processors.
#[must_use]
#[inline]
fn axis_pair(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> Vec2 {
let up = button_value(input_store, gamepad, self.up);
let down = button_value(input_store, gamepad, self.down);
let left = button_value(input_store, gamepad, self.left);
let right = button_value(input_store, gamepad, self.right);
let value = Vec2::new(right - left, up - down);
self.processors
.iter()
.fold(value, |value, processor| processor.process(value))
}
/// Presses the corresponding buttons on the provided [`Gamepad`] based on the quadrant of the given value.
fn set_axis_pair_as_gamepad(&self, world: &mut World, value: Vec2, gamepad: Option<Gamepad>) {
if value.x < 0.0 {
self.left.press_as_gamepad(world, gamepad);
} else if value.x > 0.0 {
self.right.press_as_gamepad(world, gamepad);
}
if value.y < 0.0 {
self.down.press_as_gamepad(world, gamepad);
} else if value.y > 0.0 {
self.up.press_as_gamepad(world, gamepad);
}
}
}
impl WithDualAxisProcessingPipelineExt for GamepadVirtualDPad {
#[inline]
fn reset_processing_pipeline(mut self) -> Self {
self.processors.clear();
self
}
#[inline]
fn replace_processing_pipeline(
mut self,
processor: impl IntoIterator<Item = DualAxisProcessor>,
) -> Self {
self.processors = processor.into_iter().collect();
self
}
#[inline]
fn with_processor(mut self, processor: impl Into<DualAxisProcessor>) -> Self {
self.processors.push(processor.into());
self
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::plugin::{AccumulatorPlugin, CentralInputStorePlugin};
use bevy::input::gamepad::{
GamepadConnection, GamepadConnectionEvent, GamepadEvent, GamepadInfo,
};
use bevy::input::InputPlugin;
use bevy::prelude::*;
fn test_app() -> App {
let mut app = App::new();
app.add_plugins(MinimalPlugins);
app.add_plugins((InputPlugin, AccumulatorPlugin, CentralInputStorePlugin));
// WARNING: you MUST register your gamepad during tests,
// or all gamepad input mocking actions will fail
let mut gamepad_events = app.world_mut().resource_mut::<Events<GamepadEvent>>();
gamepad_events.send(GamepadEvent::Connection(GamepadConnectionEvent {
// This MUST be consistent with any other mocked events
gamepad: Gamepad { id: 1 },
connection: GamepadConnection::Connected(GamepadInfo {
name: "TestController".into(),
}),
}));
// Ensure that the gamepad is picked up by the appropriate system
app.update();
// Ensure that the connection event is flushed through
app.update();
app
}
#[test]
fn test_gamepad_axes() {
let left_up = GamepadControlDirection::LEFT_UP;
assert_eq!(left_up.kind(), InputControlKind::Button);
// The opposite of left up
let left_down = GamepadControlDirection::LEFT_DOWN;
assert_eq!(left_down.kind(), InputControlKind::Button);
let left_x = GamepadControlAxis::LEFT_X;
assert_eq!(left_x.kind(), InputControlKind::Axis);
let left_y = GamepadControlAxis::LEFT_Y;
assert_eq!(left_y.kind(), InputControlKind::Axis);
let left = GamepadStick::LEFT;
assert_eq!(left.kind(), InputControlKind::DualAxis);
// Up; but for the other stick
let right_up = GamepadControlDirection::RIGHT_DOWN;
assert_eq!(right_up.kind(), InputControlKind::Button);
let right_y = GamepadControlAxis::RIGHT_Y;
assert_eq!(right_y.kind(), InputControlKind::Axis);
let right = GamepadStick::RIGHT;
assert_eq!(right.kind(), InputControlKind::DualAxis);
// No inputs
let mut app = test_app();
app.update();
let inputs = app.world().resource::<CentralInputStore>();
let gamepad = Gamepad::new(0);
assert!(!left_up.pressed(inputs, gamepad));
assert!(!left_down.pressed(inputs, gamepad));
assert!(!right_up.pressed(inputs, gamepad));
assert_eq!(left_x.value(inputs, gamepad), 0.0);
assert_eq!(left_y.value(inputs, gamepad), 0.0);
assert_eq!(right_y.value(inputs, gamepad), 0.0);
assert_eq!(left.axis_pair(inputs, gamepad), Vec2::ZERO);
assert_eq!(right.axis_pair(inputs, gamepad), Vec2::ZERO);
// Left stick moves upward
let data = Vec2::new(0.0, 1.0);
let mut app = test_app();
GamepadControlDirection::LEFT_UP.press_as_gamepad(app.world_mut(), Some(gamepad));
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(left_up.pressed(inputs, gamepad));
assert!(!left_down.pressed(inputs, gamepad));
assert!(!right_up.pressed(inputs, gamepad));
assert_eq!(left_x.value(inputs, gamepad), 0.0);
assert_eq!(left_y.value(inputs, gamepad), 1.0);
assert_eq!(right_y.value(inputs, gamepad), 0.0);
assert_eq!(left.axis_pair(inputs, gamepad), data);
assert_eq!(right.axis_pair(inputs, gamepad), Vec2::ZERO);
// Set Y-axis of left stick to 0.6
let data = Vec2::new(0.0, 0.6);
let mut app = test_app();
GamepadControlAxis::LEFT_Y.set_value_as_gamepad(app.world_mut(), data.y, Some(gamepad));
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(left_up.pressed(inputs, gamepad));
assert!(!left_down.pressed(inputs, gamepad));
assert!(!right_up.pressed(inputs, gamepad));
assert_eq!(left_x.value(inputs, gamepad), 0.0);
assert_eq!(left_y.value(inputs, gamepad), 0.6);
assert_eq!(right_y.value(inputs, gamepad), 0.0);
assert_eq!(left.axis_pair(inputs, gamepad), data);
assert_eq!(right.axis_pair(inputs, gamepad), Vec2::ZERO);
// Set left stick to (0.6, 0.4)
let data = Vec2::new(0.6, 0.4);
let mut app = test_app();
GamepadStick::LEFT.set_axis_pair_as_gamepad(app.world_mut(), data, Some(gamepad));
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(left_up.pressed(inputs, gamepad));
assert!(!left_down.pressed(inputs, gamepad));
assert!(!right_up.pressed(inputs, gamepad));
assert_eq!(left_x.value(inputs, gamepad), data.x);
assert_eq!(left_y.value(inputs, gamepad), data.y);
assert_eq!(right_y.value(inputs, gamepad), 0.0);
assert_eq!(left.axis_pair(inputs, gamepad), data);
assert_eq!(right.axis_pair(inputs, gamepad), Vec2::ZERO);
}
#[test]
#[ignore = "Input mocking is subtly broken: https://github.com/Leafwing-Studios/leafwing-input-manager/issues/516"]
fn test_gamepad_buttons() {
let up = GamepadButtonType::DPadUp;
assert_eq!(up.kind(), InputControlKind::Button);
let left = GamepadButtonType::DPadLeft;
assert_eq!(left.kind(), InputControlKind::Button);
let down = GamepadButtonType::DPadDown;
assert_eq!(left.kind(), InputControlKind::Button);
let right = GamepadButtonType::DPadRight;
assert_eq!(left.kind(), InputControlKind::Button);
let x_axis = GamepadVirtualAxis::DPAD_X;
assert_eq!(x_axis.kind(), InputControlKind::Axis);
let y_axis = GamepadVirtualAxis::DPAD_Y;
assert_eq!(y_axis.kind(), InputControlKind::Axis);
let dpad = GamepadVirtualDPad::DPAD;
assert_eq!(dpad.kind(), InputControlKind::DualAxis);
// No inputs
let zeros = Vec2::new(0.0, 0.0);
let mut app = test_app();
app.update();
let inputs = app.world().resource::<CentralInputStore>();
let gamepad = Gamepad::new(0);
assert!(!up.pressed(inputs, gamepad));
assert!(!left.pressed(inputs, gamepad));
assert!(!down.pressed(inputs, gamepad));
assert!(!right.pressed(inputs, gamepad));
assert_eq!(x_axis.value(inputs, gamepad), 0.0);
assert_eq!(y_axis.value(inputs, gamepad), 0.0);
assert_eq!(dpad.axis_pair(inputs, gamepad), zeros);
// Press DPadLeft
let data = Vec2::new(1.0, 0.0);
let mut app = test_app();
GamepadButtonType::DPadLeft.press(app.world_mut());
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(!up.pressed(inputs, gamepad));
assert!(left.pressed(inputs, gamepad));
assert!(!down.pressed(inputs, gamepad));
assert!(!right.pressed(inputs, gamepad));
assert_eq!(x_axis.value(inputs, gamepad), 1.0);
assert_eq!(y_axis.value(inputs, gamepad), 0.0);
assert_eq!(dpad.axis_pair(inputs, gamepad), data);
// Set the X-axis to 0.6
let data = Vec2::new(0.6, 0.0);
let mut app = test_app();
GamepadVirtualAxis::DPAD_X.set_value(app.world_mut(), data.x);
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(!up.pressed(inputs, gamepad));
assert!(left.pressed(inputs, gamepad));
assert!(!down.pressed(inputs, gamepad));
assert!(!right.pressed(inputs, gamepad));
assert_eq!(x_axis.value(inputs, gamepad), 0.6);
assert_eq!(y_axis.value(inputs, gamepad), 0.0);
assert_eq!(dpad.axis_pair(inputs, gamepad), data);
// Set the axes to (0.6, 0.4)
let data = Vec2::new(0.6, 0.4);
let mut app = test_app();
GamepadVirtualDPad::DPAD.set_axis_pair(app.world_mut(), data);
app.update();
let inputs = app.world().resource::<CentralInputStore>();
assert!(!up.pressed(inputs, gamepad));
assert!(left.pressed(inputs, gamepad));
assert!(!down.pressed(inputs, gamepad));
assert!(!right.pressed(inputs, gamepad));
assert_eq!(x_axis.value(inputs, gamepad), data.x);
assert_eq!(y_axis.value(inputs, gamepad), data.y);
assert_eq!(dpad.axis_pair(inputs, gamepad), data);
}
}