leafwing_input_manager/user_input/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//! Helpful abstractions over user inputs of all sorts.
//!
//! This module simplifies user input handling in Bevy applications
//! by providing abstractions and utilities for various input devices
//! like gamepads, keyboards, and mice. It offers a unified interface
//! for querying input values and states, reducing boilerplate code
//! and making user interactions easier to manage.
//!
//! The foundation of this module lies in the [`UserInput`] trait,
//! used to define the behavior expected from a specific user input source.
//!
//! Need something specific? You can also create your own inputs by implementing the trait for specific needs.
//!
//! Feel free to suggest additions to the built-in inputs if you have a common use case!
//!
//! ## Control Types
//!
//! [`UserInput`]s use the method [`UserInput::kind`] returning an [`InputControlKind`]
//! to classify the behavior of the input (buttons, analog axes, etc.).
//!
//! - [`InputControlKind::Button`]: Represents a digital input with an on/off state (e.g., button press).
//!   These inputs typically provide two values, typically `0.0` (inactive) and `1.0` (fully active).
//!
//! - [`InputControlKind::Axis`]: Represents an analog input (e.g., mouse wheel)
//!   with a continuous value typically ranging from `-1.0` (fully left/down) to `1.0` (fully right/up).
//!   Non-zero values are considered active.
//!
//! - [`InputControlKind::DualAxis`]: Represents a combination of two analog axes (e.g., thumb stick).
//!   These inputs provide separate X and Y values typically ranging from `-1.0` to `1.0`.
//!   Non-zero values are considered active.
//!
//! ## Basic Inputs
//!
//! [`UserInput`]s use the method [`UserInput::decompose`] returning a [`BasicInputs`]
//! used for clashing detection, see [clashing input check](crate::clashing_inputs) for details.
//!
//! ## Built-in Inputs
//!
//! ### Gamepad Inputs
//!
//! - Check gamepad button presses using Bevy's [`GamepadButtonType`] directly.
//! - Access physical sticks using [`GamepadStick`], [`GamepadControlAxis`], and [`GamepadControlDirection`].
//!
//! ### Keyboard Inputs
//!
//! - Check physical keys presses using Bevy's [`KeyCode`] directly.
//! - Use [`ModifierKey`] to check for either left or right modifier keys is pressed.
//!
//! ### Mouse Inputs
//!
//! - Check mouse buttons presses using Bevy's [`MouseButton`] directly.
//! - Track mouse motion with [`MouseMove`], [`MouseMoveAxis`], and [`MouseMoveDirection`].
//! - Capture mouse wheel events with [`MouseScroll`], [`MouseScrollAxis`], and [`MouseScrollDirection`].
//!
//! ### Complex Composition
//!
//! - Combine multiple inputs into a virtual button using [`ButtonlikeChord`].
//!   - Only active if all its inner inputs are active simultaneously.
//!   - Combine values from all inner single-axis inputs if available.
//!   - Retrieve values from the first encountered dual-axis input within the chord.
//!
//! - Create a virtual axis control:
//!   - [`GamepadVirtualAxis`] from two [`GamepadButtonType`]s.
//!   - [`KeyboardVirtualAxis`] from two [`KeyCode`]s.
//!
//! - Create a virtual directional pad (D-pad) for dual-axis control:
//!   - [`GamepadVirtualDPad`] from four [`GamepadButtonType`]s.
//!   - [`KeyboardVirtualDPad`] from four [`KeyCode`]s.
//!
//! - Create a virtual directional pad (D-pad) for triple-axis control:
//!   - [`KeyboardVirtualDPad3D`] from six [`KeyCode`]s.
//!
//! [`GamepadAxisType`]: bevy::prelude::GamepadAxisType
//! [`GamepadButtonType`]: bevy::prelude::GamepadButtonType
//! [`KeyCode`]: bevy::prelude::KeyCode
//! [`MouseButton`]: bevy::prelude::MouseButton

use std::fmt::Debug;

use bevy::math::{Vec2, Vec3};
use bevy::prelude::{Gamepad, World};
use bevy::reflect::{erased_serde, Reflect};
use dyn_clone::DynClone;
use dyn_eq::DynEq;
use dyn_hash::DynHash;
use serde::Serialize;
use updating::CentralInputStore;

use crate::clashing_inputs::BasicInputs;
use crate::InputControlKind;

pub use self::chord::*;
#[cfg(feature = "gamepad")]
pub use self::gamepad::*;
#[cfg(feature = "keyboard")]
pub use self::keyboard::*;
#[cfg(feature = "mouse")]
pub use self::mouse::*;
pub use self::trait_serde::RegisterUserInput;

pub mod chord;
#[cfg(feature = "gamepad")]
pub mod gamepad;
#[cfg(feature = "keyboard")]
pub mod keyboard;
#[cfg(feature = "mouse")]
pub mod mouse;
pub mod testing_utils;
mod trait_reflection;
mod trait_serde;
pub mod updating;

/// A trait for defining the behavior expected from different user input sources.
pub trait UserInput: Send + Sync + Debug {
    /// Defines the kind of behavior that the input should be.
    fn kind(&self) -> InputControlKind;

    /// Returns the set of primitive inputs that make up this input.
    ///
    /// These inputs are used to detect clashes between different user inputs,
    /// and are stored in a [`BasicInputs`] for easy comparison.
    ///
    /// For inputs that represent a simple, atomic control,
    /// this method should always return a [`BasicInputs::Simple`] that only contains the input itself.
    fn decompose(&self) -> BasicInputs;
}

/// A trait used for buttonlike user inputs, which can be pressed or released.
pub trait Buttonlike:
    UserInput + DynClone + DynEq + DynHash + Reflect + erased_serde::Serialize
{
    /// Checks if the input is currently active.
    fn pressed(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> bool;

    /// Checks if the input is currently inactive.
    fn released(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> bool {
        !self.pressed(input_store, gamepad)
    }

    /// Simulates a press of the buttonlike input by sending the appropriate event.
    ///
    /// This method defaults to calling [`Buttonlike::press_as_gamepad`] if not overridden,
    /// as is the case for gamepad-reliant inputs.
    fn press(&self, world: &mut World) {
        self.press_as_gamepad(world, None);
    }

    /// Simulate a press of the buttonlike input, pretending to be the provided [`Gamepad`].
    ///
    /// This method defaults to calling [`Buttonlike::press`] if not overridden,
    /// as is the case for things like mouse buttons and keyboard keys.
    ///
    /// Use [`find_gamepad`] inside of this method to search for a gamepad to press the button on
    /// if the provided gamepad is `None`.
    fn press_as_gamepad(&self, world: &mut World, _gamepad: Option<Gamepad>) {
        self.press(world);
    }

    /// Simulates a release of the buttonlike input by sending the appropriate event.
    ///
    /// This method defaults to calling [`Buttonlike::release_as_gamepad`] if not overridden,
    /// as is the case for gamepad-reliant inputs.
    fn release(&self, world: &mut World) {
        self.release_as_gamepad(world, None);
    }

    /// Simulate a release of the buttonlike input, pretending to be the provided [`Gamepad`].
    ///
    /// This method defaults to calling [`Buttonlike::release`] if not overridden,
    /// as is the case for things like mouse buttons and keyboard keys.
    ///
    /// Use [`find_gamepad`] inside of this method to search for a gamepad to press the button on
    /// if the provided gamepad is `None`.
    fn release_as_gamepad(&self, world: &mut World, _gamepad: Option<Gamepad>) {
        self.release(world);
    }
}

/// A trait used for axis-like user inputs, which provide a continuous value.
pub trait Axislike:
    UserInput + DynClone + DynEq + DynHash + Reflect + erased_serde::Serialize
{
    /// Gets the current value of the input as an `f32`.
    fn value(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> f32;

    /// Simulate an axis-like input by sending the appropriate event.
    ///
    /// This method defaults to calling [`Axislike::set_value_as_gamepad`] if not overridden,
    /// as is the case for gamepad-reliant inputs.
    fn set_value(&self, world: &mut World, value: f32) {
        self.set_value_as_gamepad(world, value, None);
    }

    /// Simulate an axis-like input, pretending to be the provided [`Gamepad`].
    ///
    /// This method defaults to calling [`Axislike::set_value`] if not overridden,
    /// as is the case for things like a mouse wheel.
    ///
    /// Use [`find_gamepad`] inside of this method to search for a gamepad to press the button on
    /// if the provided gamepad is `None`.
    fn set_value_as_gamepad(&self, world: &mut World, value: f32, _gamepad: Option<Gamepad>) {
        self.set_value(world, value);
    }
}

/// A trait used for dual-axis-like user inputs, which provide separate X and Y values.
pub trait DualAxislike:
    UserInput + DynClone + DynEq + DynHash + Reflect + erased_serde::Serialize
{
    /// Gets the values of this input along the X and Y axes (if applicable).
    fn axis_pair(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> Vec2;

    /// Simulate a dual-axis-like input by sending the appropriate event.
    ///
    /// This method defaults to calling [`DualAxislike::set_axis_pair_as_gamepad`] if not overridden,
    /// as is the case for gamepad-reliant inputs.
    fn set_axis_pair(&self, world: &mut World, value: Vec2) {
        self.set_axis_pair_as_gamepad(world, value, None);
    }

    /// Simulate a dual-axis-like input, pretending to be the provided [`Gamepad`].
    ///
    /// This method defaults to calling [`DualAxislike::set_axis_pair`] if not overridden,
    /// as is the case for things like a mouse wheel.
    ///
    /// Use [`find_gamepad`] inside of this method to search for a gamepad to press the button on
    /// if the provided gamepad is `None`.
    fn set_axis_pair_as_gamepad(&self, world: &mut World, value: Vec2, _gamepad: Option<Gamepad>) {
        self.set_axis_pair(world, value);
    }
}

/// A trait used for triple-axis-like user inputs, which provide separate X, Y, and Z values.
pub trait TripleAxislike:
    UserInput + DynClone + DynEq + DynHash + Reflect + erased_serde::Serialize
{
    /// Gets the values of this input along the X, Y, and Z axes (if applicable).
    fn axis_triple(&self, input_store: &CentralInputStore, gamepad: Gamepad) -> Vec3;

    /// Simulate a triple-axis-like input by sending the appropriate event.
    ///
    /// This method defaults to calling [`TripleAxislike::set_axis_triple_as_gamepad`] if not overridden,
    /// as is the case for gamepad-reliant inputs.
    fn set_axis_triple(&self, world: &mut World, value: Vec3) {
        self.set_axis_triple_as_gamepad(world, value, None);
    }

    /// Simulate a triple-axis-like input, pretending to be the provided [`Gamepad`].
    ///
    /// This method defaults to calling [`TripleAxislike::set_axis_triple`] if not overridden,
    /// as is the case for things like a space mouse.
    ///
    /// Use [`find_gamepad`] inside of this method to search for a gamepad to press the button on
    /// if the provided gamepad is `None`.
    fn set_axis_triple_as_gamepad(
        &self,
        world: &mut World,
        value: Vec3,
        _gamepad: Option<Gamepad>,
    ) {
        self.set_axis_triple(world, value);
    }
}

/// A wrapper type to get around the lack of [trait upcasting coercion](https://github.com/rust-lang/rust/issues/65991).
///
/// To return a generic [`UserInput`] trait object from a function, you can use this wrapper type.

#[derive(Reflect, Debug, Clone, PartialEq, Eq, Hash, Serialize)]
pub enum UserInputWrapper {
    /// Wraps a [`Buttonlike`] input.
    Button(Box<dyn Buttonlike>),
    /// Wraps an [`Axislike`] input.
    Axis(Box<dyn Axislike>),
    /// Wraps a [`DualAxislike`] input.
    DualAxis(Box<dyn DualAxislike>),
    /// Wraps a [`TripleAxislike`] input.
    TripleAxis(Box<dyn TripleAxislike>),
}

impl UserInput for UserInputWrapper {
    #[track_caller]
    fn kind(&self) -> InputControlKind {
        match self {
            UserInputWrapper::Button(input) => {
                debug_assert!(input.kind() == InputControlKind::Button);
                input.kind()
            }
            UserInputWrapper::Axis(input) => {
                debug_assert!(input.kind() == InputControlKind::Axis);
                input.kind()
            }
            UserInputWrapper::DualAxis(input) => {
                debug_assert!(input.kind() == InputControlKind::DualAxis);
                input.kind()
            }
            UserInputWrapper::TripleAxis(input) => {
                debug_assert!(input.kind() == InputControlKind::TripleAxis);
                input.kind()
            }
        }
    }

    fn decompose(&self) -> BasicInputs {
        match self {
            UserInputWrapper::Button(input) => input.decompose(),
            UserInputWrapper::Axis(input) => input.decompose(),
            UserInputWrapper::DualAxis(input) => input.decompose(),
            UserInputWrapper::TripleAxis(input) => input.decompose(),
        }
    }
}