leafwing_input_manager/input_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
//! This module contains [`InputMap`] and its supporting methods and impls.
use std::fmt::Debug;
use std::hash::Hash;
#[cfg(feature = "asset")]
use bevy::asset::Asset;
use bevy::prelude::{Component, Deref, DerefMut, Gamepad, Gamepads, Reflect, Resource};
use bevy::utils::HashMap;
use bevy::{log::error, prelude::ReflectComponent};
use bevy::{
math::{Vec2, Vec3},
prelude::ReflectResource,
};
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use crate::clashing_inputs::ClashStrategy;
use crate::prelude::updating::CentralInputStore;
use crate::prelude::UserInputWrapper;
use crate::user_input::{Axislike, Buttonlike, DualAxislike, TripleAxislike};
use crate::{Actionlike, InputControlKind};
#[cfg(feature = "gamepad")]
use crate::user_input::gamepad::find_gamepad;
#[cfg(not(feature = "gamepad"))]
fn find_gamepad(_gamepads: &Gamepads) -> Gamepad {
Gamepad::new(0)
}
/// A Multi-Map that allows you to map actions to multiple [`UserInputs`](crate::user_input::UserInput)s,
/// whether they are [`Buttonlike`], [`Axislike`] or [`DualAxislike`].
///
/// When inserting a binding, the [`InputControlKind`] of the action variant must match that of the input type.
/// Use [`InputMap::insert`] to insert buttonlike inputs,
/// [`InputMap::insert_axis`] to insert axislike inputs,
/// and [`InputMap::insert_dual_axis`] to insert dual-axislike inputs.
///
/// # Many-to-One Mapping
///
/// You can associate multiple [`Buttonlike`]s (e.g., keyboard keys, mouse buttons, gamepad buttons)
/// with a single action, simplifying handling complex input combinations for the same action.
/// Duplicate associations are ignored.
///
/// # One-to-Many Mapping
///
/// A single [`Buttonlike`] can be mapped to multiple actions simultaneously.
/// This allows flexibility in defining alternative ways to trigger an action.
///
/// # Clash Resolution
///
/// By default, the [`InputMap`] prioritizes larger [`Buttonlike`] combinations to trigger actions.
/// This means if two actions share some inputs, and one action requires all the inputs
/// of the other plus additional ones; only the larger combination will be registered.
///
/// This avoids unintended actions from being triggered by more specific input combinations.
/// For example, pressing both `S` and `Ctrl + S` in your text editor app
/// would only save your file (the larger combination), and not enter the letter `s`.
///
/// This behavior can be customized using the [`ClashStrategy`] resource.
///
/// # Examples
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// // Define your actions.
/// #[derive(Actionlike, Debug, Clone, Copy, PartialEq, Eq, Hash, Reflect)]
/// enum Action {
/// #[actionlike(DualAxis)]
/// Move,
/// Run,
/// Jump,
/// }
///
/// // Create an InputMap from an iterable,
/// // allowing for multiple input types per action.
/// let mut input_map = InputMap::new([
/// // Multiple inputs can be bound to the same action.
/// // Note that the type of your iterators must be homogeneous.
/// (Action::Run, KeyCode::ShiftLeft),
/// (Action::Run, KeyCode::ShiftRight),
/// // Note that duplicate associations are ignored.
/// (Action::Run, KeyCode::ShiftRight),
/// (Action::Jump, KeyCode::Space),
/// ])
/// // Associate actions with other input types.
/// .with_dual_axis(Action::Move, KeyboardVirtualDPad::WASD)
/// .with_dual_axis(Action::Move, GamepadStick::LEFT)
/// // Associate an action with multiple inputs at once.
/// .with_one_to_many(Action::Jump, [KeyCode::KeyJ, KeyCode::KeyU]);
///
/// // You can also use methods like a normal MultiMap.
/// input_map.insert(Action::Jump, KeyCode::KeyM);
///
/// // Remove all bindings to a specific action.
/// input_map.clear_action(&Action::Jump);
///
/// // Remove all bindings.
/// input_map.clear();
/// ```
#[derive(Resource, Component, Debug, Clone, PartialEq, Eq, Reflect, Serialize, Deserialize)]
#[cfg_attr(feature = "asset", derive(Asset))]
#[reflect(Resource, Component)]
pub struct InputMap<A: Actionlike> {
/// The underlying map that stores action-input mappings for [`Buttonlike`] actions.
buttonlike_map: HashMap<A, Vec<Box<dyn Buttonlike>>>,
/// The underlying map that stores action-input mappings for [`Axislike`] actions.
axislike_map: HashMap<A, Vec<Box<dyn Axislike>>>,
/// The underlying map that stores action-input mappings for [`DualAxislike`] actions.
dual_axislike_map: HashMap<A, Vec<Box<dyn DualAxislike>>>,
/// The underlying map that stores action-input mappings for [`TripleAxislike`] actions.
triple_axislike_map: HashMap<A, Vec<Box<dyn TripleAxislike>>>,
/// The specified [`Gamepad`] from which this map exclusively accepts input.
associated_gamepad: Option<Gamepad>,
}
impl<A: Actionlike> Default for InputMap<A> {
fn default() -> Self {
InputMap {
buttonlike_map: HashMap::default(),
axislike_map: HashMap::default(),
dual_axislike_map: HashMap::default(),
triple_axislike_map: HashMap::default(),
associated_gamepad: None,
}
}
}
// Constructors
impl<A: Actionlike> InputMap<A> {
/// Creates an [`InputMap`] from an iterator over [`Buttonlike`] action-input bindings.
/// Note that all elements within the iterator must be of the same type (homogeneous).
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn new(bindings: impl IntoIterator<Item = (A, impl Buttonlike)>) -> Self {
bindings
.into_iter()
.fold(Self::default(), |map, (action, input)| {
map.with(action, input)
})
}
/// Associates an `action` with a specific [`Buttonlike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with(mut self, action: A, button: impl Buttonlike) -> Self {
self.insert(action, button);
self
}
/// Associates an `action` with a specific [`Axislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with_axis(mut self, action: A, axis: impl Axislike) -> Self {
self.insert_axis(action, axis);
self
}
/// Associates an `action` with a specific [`DualAxislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with_dual_axis(mut self, action: A, dual_axis: impl DualAxislike) -> Self {
self.insert_dual_axis(action, dual_axis);
self
}
/// Associates an `action` with a specific [`TripleAxislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with_triple_axis(mut self, action: A, triple_axis: impl TripleAxislike) -> Self {
self.insert_triple_axis(action, triple_axis);
self
}
/// Associates an `action` with multiple [`Buttonlike`] `inputs` provided by an iterator.
/// Note that all elements within the iterator must be of the same type (homogeneous).
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with_one_to_many(
mut self,
action: A,
inputs: impl IntoIterator<Item = impl Buttonlike>,
) -> Self {
self.insert_one_to_many(action, inputs);
self
}
/// Adds multiple action-input bindings provided by an iterator.
/// Note that all elements within the iterator must be of the same type (homogeneous).
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn with_multiple(
mut self,
bindings: impl IntoIterator<Item = (A, impl Buttonlike)>,
) -> Self {
self.insert_multiple(bindings);
self
}
}
#[inline(always)]
fn insert_unique<K, V>(map: &mut HashMap<K, Vec<V>>, key: &K, value: V)
where
K: Clone + Eq + Hash,
V: PartialEq,
{
if let Some(list) = map.get_mut(key) {
if !list.contains(&value) {
list.push(value);
}
} else {
map.insert(key.clone(), vec![value]);
}
}
// Insertion
impl<A: Actionlike> InputMap<A> {
/// Inserts a binding between an `action` and a specific [`Buttonlike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
#[track_caller]
pub fn insert(&mut self, action: A, button: impl Buttonlike) -> &mut Self {
debug_assert!(
action.input_control_kind() == InputControlKind::Button,
"Cannot map a Buttonlike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
if action.input_control_kind() != InputControlKind::Button {
error!(
"Cannot map a Buttonlike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
return self;
}
insert_unique(&mut self.buttonlike_map, &action, Box::new(button));
self
}
/// Inserts a binding between an `action` and a specific [`Axislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
#[track_caller]
pub fn insert_axis(&mut self, action: A, axis: impl Axislike) -> &mut Self {
debug_assert!(
action.input_control_kind() == InputControlKind::Axis,
"Cannot map an Axislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
if action.input_control_kind() != InputControlKind::Axis {
error!(
"Cannot map an Axislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
return self;
}
insert_unique(&mut self.axislike_map, &action, Box::new(axis));
self
}
/// Inserts a binding between an `action` and a specific [`DualAxislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
#[track_caller]
pub fn insert_dual_axis(&mut self, action: A, dual_axis: impl DualAxislike) -> &mut Self {
debug_assert!(
action.input_control_kind() == InputControlKind::DualAxis,
"Cannot map a DualAxislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
if action.input_control_kind() != InputControlKind::DualAxis {
error!(
"Cannot map a DualAxislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
return self;
}
insert_unique(&mut self.dual_axislike_map, &action, Box::new(dual_axis));
self
}
/// Inserts a binding between an `action` and a specific [`TripleAxislike`] `input`.
/// Multiple inputs can be bound to the same action.
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
#[track_caller]
pub fn insert_triple_axis(&mut self, action: A, triple_axis: impl TripleAxislike) -> &mut Self {
debug_assert!(
action.input_control_kind() == InputControlKind::TripleAxis,
"Cannot map a TripleAxislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
if action.input_control_kind() != InputControlKind::TripleAxis {
error!(
"Cannot map a TripleAxislike input for action {:?} of kind {:?}",
action,
action.input_control_kind()
);
return self;
}
let boxed = Box::new(triple_axis);
insert_unique(&mut self.triple_axislike_map, &action, boxed);
self
}
/// Inserts bindings between the same `action` and multiple [`Buttonlike`] `inputs` provided by an iterator.
/// Note that all elements within the iterator must be of the same type (homogeneous).
///
/// To insert a chord, such as Control + A, use a [`ButtonlikeChord`](crate::user_input::ButtonlikeChord).
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn insert_one_to_many(
&mut self,
action: A,
inputs: impl IntoIterator<Item = impl Buttonlike>,
) -> &mut Self {
let inputs = inputs
.into_iter()
.map(|input| Box::new(input) as Box<dyn Buttonlike>);
if let Some(bindings) = self.buttonlike_map.get_mut(&action) {
for input in inputs {
if !bindings.contains(&input) {
bindings.push(input);
}
}
} else {
self.buttonlike_map
.insert(action, inputs.unique().collect());
}
self
}
/// Inserts multiple action-input [`Buttonlike`] bindings provided by an iterator.
/// Note that all elements within the iterator must be of the same type (homogeneous).
///
/// This method ensures idempotence, meaning that adding the same input
/// for the same action multiple times will only result in a single binding being created.
#[inline(always)]
pub fn insert_multiple(
&mut self,
bindings: impl IntoIterator<Item = (A, impl Buttonlike)>,
) -> &mut Self {
for (action, input) in bindings.into_iter() {
self.insert(action, input);
}
self
}
/// Merges the provided [`InputMap`] into this `map`, combining their bindings,
/// avoiding duplicates.
///
/// If the associated gamepads do not match, the association will be removed.
pub fn merge(&mut self, other: &InputMap<A>) -> &mut Self {
if self.associated_gamepad != other.associated_gamepad {
self.clear_gamepad();
}
for (other_action, other_inputs) in other.iter_buttonlike() {
for other_input in other_inputs.iter().cloned() {
insert_unique(&mut self.buttonlike_map, other_action, other_input);
}
}
for (other_action, other_inputs) in other.iter_axislike() {
for other_input in other_inputs.iter().cloned() {
insert_unique(&mut self.axislike_map, other_action, other_input);
}
}
for (other_action, other_inputs) in other.iter_dual_axislike() {
for other_input in other_inputs.iter().cloned() {
insert_unique(&mut self.dual_axislike_map, other_action, other_input);
}
}
for (other_action, other_inputs) in other.iter_triple_axislike() {
for other_input in other_inputs.iter().cloned() {
insert_unique(&mut self.triple_axislike_map, other_action, other_input);
}
}
self
}
}
// Configuration
impl<A: Actionlike> InputMap<A> {
/// Fetches the [`Gamepad`] associated with the entity controlled by this input map.
///
/// If this is [`None`], input from any connected gamepad will be used.
#[must_use]
#[inline]
pub const fn gamepad(&self) -> Option<Gamepad> {
self.associated_gamepad
}
/// Assigns a particular [`Gamepad`] to the entity controlled by this input map.
///
/// Use this when an [`InputMap`] should exclusively accept input
/// from a particular gamepad.
///
/// If this is not called, input from any connected gamepad will be used.
/// The first matching non-zero input will be accepted,
/// as determined by gamepad registration order.
///
/// Because of this robust fallback behavior,
/// this method can typically be ignored when writing single-player games.
#[inline]
pub fn with_gamepad(mut self, gamepad: Gamepad) -> Self {
self.set_gamepad(gamepad);
self
}
/// Assigns a particular [`Gamepad`] to the entity controlled by this input map.
///
/// Use this when an [`InputMap`] should exclusively accept input
/// from a particular gamepad.
///
/// If this is not called, input from any connected gamepad will be used.
/// The first matching non-zero input will be accepted,
/// as determined by gamepad registration order.
///
/// Because of this robust fallback behavior,
/// this method can typically be ignored when writing single-player games.
#[inline]
pub fn set_gamepad(&mut self, gamepad: Gamepad) -> &mut Self {
self.associated_gamepad = Some(gamepad);
self
}
/// Clears any [`Gamepad`] associated with the entity controlled by this input map.
#[inline]
pub fn clear_gamepad(&mut self) -> &mut Self {
self.associated_gamepad = None;
self
}
}
// Check whether actions are pressed
impl<A: Actionlike> InputMap<A> {
/// Checks if the `action` are currently pressed by any of the associated [`Buttonlike`]s.
///
/// Accounts for clashing inputs according to the [`ClashStrategy`] and remove conflicting actions.
#[must_use]
pub fn pressed(
&self,
action: &A,
input_store: &CentralInputStore,
clash_strategy: ClashStrategy,
) -> bool {
let processed_actions =
self.process_actions(&Gamepads::default(), input_store, clash_strategy);
let Some(updated_value) = processed_actions.get(action) else {
return false;
};
match updated_value {
UpdatedValue::Button(state) => *state,
_ => false,
}
}
/// Determines the correct state for each action according to provided [`CentralInputStore`].
///
/// This method uses the input bindings for each action to determine how to parse the input data,
/// and generates corresponding [`ButtonData`](crate::action_state::ButtonData),
/// [`AxisData`](crate::action_state::AxisData) and [`DualAxisData`](crate::action_state::DualAxisData).
///
/// For [`Buttonlike`] actions, this accounts for clashing inputs according to the [`ClashStrategy`] and removes conflicting actions.
///
/// [`Buttonlike`] inputs will be pressed if any of the associated inputs are pressed.
/// [`Axislike`] and [`DualAxislike`] inputs will be the sum of all associated inputs.
#[must_use]
pub fn process_actions(
&self,
gamepads: &Gamepads,
input_store: &CentralInputStore,
clash_strategy: ClashStrategy,
) -> UpdatedActions<A> {
let mut updated_actions = UpdatedActions::default();
let gamepad = self.associated_gamepad.unwrap_or(find_gamepad(gamepads));
// Generate the base action data for each action
for (action, _input_bindings) in self.iter_buttonlike() {
let mut final_state = false;
for binding in _input_bindings {
if binding.pressed(input_store, gamepad) {
final_state = true;
break;
}
}
updated_actions.insert(action.clone(), UpdatedValue::Button(final_state));
}
for (action, _input_bindings) in self.iter_axislike() {
let mut final_value = 0.0;
for binding in _input_bindings {
final_value += binding.value(input_store, gamepad);
}
updated_actions.insert(action.clone(), UpdatedValue::Axis(final_value));
}
for (action, _input_bindings) in self.iter_dual_axislike() {
let mut final_value = Vec2::ZERO;
for binding in _input_bindings {
final_value += binding.axis_pair(input_store, gamepad);
}
updated_actions.insert(action.clone(), UpdatedValue::DualAxis(final_value));
}
for (action, _input_bindings) in self.iter_triple_axislike() {
let mut final_value = Vec3::ZERO;
for binding in _input_bindings {
final_value += binding.axis_triple(input_store, gamepad);
}
updated_actions.insert(action.clone(), UpdatedValue::TripleAxis(final_value));
}
// Handle clashing inputs, possibly removing some pressed actions from the list
self.handle_clashes(&mut updated_actions, input_store, clash_strategy, gamepad);
updated_actions
}
}
/// The output returned by [`InputMap::process_actions`],
/// used by [`ActionState::update`](crate::action_state::ActionState) to update the state of each action.
#[derive(Debug, Clone, PartialEq, Deref, DerefMut)]
pub struct UpdatedActions<A: Actionlike>(pub HashMap<A, UpdatedValue>);
impl<A: Actionlike> UpdatedActions<A> {
/// Returns `true` if the action is both buttonlike and pressed.
pub fn pressed(&self, action: &A) -> bool {
match self.0.get(action) {
Some(UpdatedValue::Button(state)) => *state,
_ => false,
}
}
}
/// An enum representing the updated value of an action.
///
/// Used in [`UpdatedActions`] to store the updated state of each action.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum UpdatedValue {
/// A buttonlike action that was pressed or released.
Button(bool),
/// An axislike action that was updated.
Axis(f32),
/// A dual-axislike action that was updated.
DualAxis(Vec2),
/// A triple-axislike action that was updated.
TripleAxis(Vec3),
}
impl<A: Actionlike> Default for UpdatedActions<A> {
fn default() -> Self {
Self(HashMap::default())
}
}
// Utilities
impl<A: Actionlike> InputMap<A> {
/// Returns an iterator over all registered [`Buttonlike`] actions with their input bindings.
pub fn iter_buttonlike(&self) -> impl Iterator<Item = (&A, &Vec<Box<dyn Buttonlike>>)> {
self.buttonlike_map.iter()
}
/// Returns an iterator over all registered [`Axislike`] actions with their input bindings.
pub fn iter_axislike(&self) -> impl Iterator<Item = (&A, &Vec<Box<dyn Axislike>>)> {
self.axislike_map.iter()
}
/// Returns an iterator over all registered [`DualAxislike`] actions with their input bindings.
pub fn iter_dual_axislike(&self) -> impl Iterator<Item = (&A, &Vec<Box<dyn DualAxislike>>)> {
self.dual_axislike_map.iter()
}
/// Returns an iterator over all registered [`TripleAxislike`] actions with their input bindings.
pub fn iter_triple_axislike(
&self,
) -> impl Iterator<Item = (&A, &Vec<Box<dyn TripleAxislike>>)> {
self.triple_axislike_map.iter()
}
/// Returns an iterator over all registered [`Buttonlike`] action-input bindings.
pub fn buttonlike_bindings(&self) -> impl Iterator<Item = (&A, &dyn Buttonlike)> {
self.buttonlike_map
.iter()
.flat_map(|(action, inputs)| inputs.iter().map(move |input| (action, input.as_ref())))
}
/// Returns an iterator over all registered [`Axislike`] action-input bindings.
pub fn axislike_bindings(&self) -> impl Iterator<Item = (&A, &dyn Axislike)> {
self.axislike_map
.iter()
.flat_map(|(action, inputs)| inputs.iter().map(move |input| (action, input.as_ref())))
}
/// Returns an iterator over all registered [`DualAxislike`] action-input bindings.
pub fn dual_axislike_bindings(&self) -> impl Iterator<Item = (&A, &dyn DualAxislike)> {
self.dual_axislike_map
.iter()
.flat_map(|(action, inputs)| inputs.iter().map(move |input| (action, input.as_ref())))
}
/// Returns an iterator over all registered [`TripleAxislike`] action-input bindings.
pub fn triple_axislike_bindings(&self) -> impl Iterator<Item = (&A, &dyn TripleAxislike)> {
self.triple_axislike_map
.iter()
.flat_map(|(action, inputs)| inputs.iter().map(move |input| (action, input.as_ref())))
}
/// Returns an iterator over all registered [`Buttonlike`] actions.
pub fn buttonlike_actions(&self) -> impl Iterator<Item = &A> {
self.buttonlike_map.keys()
}
/// Returns an iterator over all registered [`Axislike`] actions.
pub fn axislike_actions(&self) -> impl Iterator<Item = &A> {
self.axislike_map.keys()
}
/// Returns an iterator over all registered [`DualAxislike`] actions.
pub fn dual_axislike_actions(&self) -> impl Iterator<Item = &A> {
self.dual_axislike_map.keys()
}
/// Returns an iterator over all registered [`TripleAxislike`] actions.
pub fn triple_axislike_actions(&self) -> impl Iterator<Item = &A> {
self.triple_axislike_map.keys()
}
/// Returns a reference to the [`UserInput`](crate::user_input::UserInput) inputs associated with the given `action`.
///
/// # Warning
///
/// Unlike the other `get` methods, this method is forced to clone the inputs
/// due to the lack of [trait upcasting coercion](https://github.com/rust-lang/rust/issues/65991).
///
/// As a result, no equivalent `get_mut` method is provided.
#[must_use]
pub fn get(&self, action: &A) -> Option<Vec<UserInputWrapper>> {
match action.input_control_kind() {
InputControlKind::Button => {
let buttonlike = self.buttonlike_map.get(action)?;
Some(
buttonlike
.iter()
.map(|input| UserInputWrapper::Button(input.clone()))
.collect(),
)
}
InputControlKind::Axis => {
let axislike = self.axislike_map.get(action)?;
Some(
axislike
.iter()
.map(|input| UserInputWrapper::Axis(input.clone()))
.collect(),
)
}
InputControlKind::DualAxis => {
let dual_axislike = self.dual_axislike_map.get(action)?;
Some(
dual_axislike
.iter()
.map(|input| UserInputWrapper::DualAxis(input.clone()))
.collect(),
)
}
InputControlKind::TripleAxis => {
let triple_axislike = self.triple_axislike_map.get(action)?;
Some(
triple_axislike
.iter()
.map(|input| UserInputWrapper::TripleAxis(input.clone()))
.collect(),
)
}
}
}
/// Returns a reference to the [`Buttonlike`] inputs associated with the given `action`.
#[must_use]
pub fn get_buttonlike(&self, action: &A) -> Option<&Vec<Box<dyn Buttonlike>>> {
self.buttonlike_map.get(action)
}
/// Returns a mutable reference to the [`Buttonlike`] inputs mapped to `action`
#[must_use]
pub fn get_buttonlike_mut(&mut self, action: &A) -> Option<&mut Vec<Box<dyn Buttonlike>>> {
self.buttonlike_map.get_mut(action)
}
/// Returns a reference to the [`Axislike`] inputs associated with the given `action`.
#[must_use]
pub fn get_axislike(&self, action: &A) -> Option<&Vec<Box<dyn Axislike>>> {
self.axislike_map.get(action)
}
/// Returns a mutable reference to the [`Axislike`] inputs mapped to `action`
#[must_use]
pub fn get_axislike_mut(&mut self, action: &A) -> Option<&mut Vec<Box<dyn Axislike>>> {
self.axislike_map.get_mut(action)
}
/// Returns a reference to the [`DualAxislike`] inputs associated with the given `action`.
#[must_use]
pub fn get_dual_axislike(&self, action: &A) -> Option<&Vec<Box<dyn DualAxislike>>> {
self.dual_axislike_map.get(action)
}
/// Returns a mutable reference to the [`DualAxislike`] inputs mapped to `action`
#[must_use]
pub fn get_dual_axislike_mut(&mut self, action: &A) -> Option<&mut Vec<Box<dyn DualAxislike>>> {
self.dual_axislike_map.get_mut(action)
}
/// Returns a reference to the [`TripleAxislike`] inputs associated with the given `action`.
#[must_use]
pub fn get_triple_axislike(&self, action: &A) -> Option<&Vec<Box<dyn TripleAxislike>>> {
self.triple_axislike_map.get(action)
}
/// Returns a mutable reference to the [`TripleAxislike`] inputs mapped to `action`
#[must_use]
pub fn get_triple_axislike_mut(
&mut self,
action: &A,
) -> Option<&mut Vec<Box<dyn TripleAxislike>>> {
self.triple_axislike_map.get_mut(action)
}
/// Count the total number of registered input bindings.
#[must_use]
pub fn len(&self) -> usize {
self.buttonlike_map.values().map(Vec::len).sum::<usize>()
+ self.axislike_map.values().map(Vec::len).sum::<usize>()
+ self.dual_axislike_map.values().map(Vec::len).sum::<usize>()
+ self
.triple_axislike_map
.values()
.map(Vec::len)
.sum::<usize>()
}
/// Returns `true` if the map contains no action-input bindings.
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Clears the map, removing all action-input bindings.
pub fn clear(&mut self) {
self.buttonlike_map.clear();
self.axislike_map.clear();
self.dual_axislike_map.clear();
self.triple_axislike_map.clear();
}
}
// Removing
impl<A: Actionlike> InputMap<A> {
/// Clears all input bindings associated with the `action`.
pub fn clear_action(&mut self, action: &A) {
match action.input_control_kind() {
InputControlKind::Button => {
self.buttonlike_map.remove(action);
}
InputControlKind::Axis => {
self.axislike_map.remove(action);
}
InputControlKind::DualAxis => {
self.dual_axislike_map.remove(action);
}
InputControlKind::TripleAxis => {
self.triple_axislike_map.remove(action);
}
}
}
/// Removes the input for the `action` at the provided index.
///
/// Returns `Some(())` if the input was found and removed, or `None` if no matching input was found.
///
/// # Note
///
/// The original input cannot be returned, as the trait object may differ based on the [`InputControlKind`].
pub fn remove_at(&mut self, action: &A, index: usize) -> Option<()> {
match action.input_control_kind() {
InputControlKind::Button => {
let input_bindings = self.buttonlike_map.get_mut(action)?;
if input_bindings.len() > index {
input_bindings.remove(index);
Some(())
} else {
None
}
}
InputControlKind::Axis => {
let input_bindings = self.axislike_map.get_mut(action)?;
if input_bindings.len() > index {
input_bindings.remove(index);
Some(())
} else {
None
}
}
InputControlKind::DualAxis => {
let input_bindings = self.dual_axislike_map.get_mut(action)?;
if input_bindings.len() > index {
input_bindings.remove(index);
Some(())
} else {
None
}
}
InputControlKind::TripleAxis => {
let input_bindings = self.triple_axislike_map.get_mut(action)?;
if input_bindings.len() > index {
input_bindings.remove(index);
Some(())
} else {
None
}
}
}
}
/// Removes the input for the `action` if it exists
///
/// Returns [`Some`] with index if the input was found, or [`None`] if no matching input was found.
pub fn remove(&mut self, action: &A, input: impl Buttonlike) -> Option<usize> {
let bindings = self.buttonlike_map.get_mut(action)?;
let boxed_input: Box<dyn Buttonlike> = Box::new(input);
let index = bindings.iter().position(|input| input == &boxed_input)?;
bindings.remove(index);
Some(index)
}
}
impl<A: Actionlike, U: Buttonlike> From<HashMap<A, Vec<U>>> for InputMap<A> {
/// Converts a [`HashMap`] mapping actions to multiple [`Buttonlike`]s into an [`InputMap`].
///
/// # Examples
///
/// ```rust
/// use bevy::prelude::*;
/// use bevy::utils::HashMap;
/// use leafwing_input_manager::prelude::*;
///
/// #[derive(Actionlike, Debug, Clone, Copy, PartialEq, Eq, Hash, Reflect)]
/// enum Action {
/// Run,
/// Jump,
/// }
///
/// // Create an InputMap from a HashMap mapping actions to their key bindings.
/// let mut map: HashMap<Action, Vec<KeyCode>> = HashMap::default();
///
/// // Bind the "run" action to either the left or right shift keys to trigger the action.
/// map.insert(
/// Action::Run,
/// vec![KeyCode::ShiftLeft, KeyCode::ShiftRight],
/// );
///
/// let input_map = InputMap::from(map);
/// ```
fn from(raw_map: HashMap<A, Vec<U>>) -> Self {
let mut input_map = Self::default();
for (action, inputs) in raw_map.into_iter() {
input_map.insert_one_to_many(action, inputs);
}
input_map
}
}
impl<A: Actionlike, U: Buttonlike> FromIterator<(A, U)> for InputMap<A> {
fn from_iter<T: IntoIterator<Item = (A, U)>>(iter: T) -> Self {
let mut input_map = Self::default();
for (action, input) in iter.into_iter() {
input_map.insert(action, input);
}
input_map
}
}
#[cfg(feature = "keyboard")]
mod tests {
use bevy::prelude::Reflect;
use serde::{Deserialize, Serialize};
use super::*;
use crate as leafwing_input_manager;
use crate::prelude::*;
#[derive(Actionlike, Serialize, Deserialize, Clone, PartialEq, Eq, Hash, Debug, Reflect)]
enum Action {
Run,
Jump,
Hide,
#[actionlike(Axis)]
Axis,
#[actionlike(DualAxis)]
DualAxis,
#[actionlike(Axis)]
TripleAxis,
}
#[test]
fn creation() {
use bevy::input::keyboard::KeyCode;
let input_map = InputMap::default()
.with(Action::Run, KeyCode::KeyW)
.with(Action::Run, KeyCode::ShiftLeft)
// Duplicate associations should be ignored
.with(Action::Run, KeyCode::ShiftLeft)
.with_one_to_many(Action::Run, [KeyCode::KeyR, KeyCode::ShiftRight])
.with_multiple([
(Action::Jump, KeyCode::Space),
(Action::Hide, KeyCode::ControlLeft),
(Action::Hide, KeyCode::ControlRight),
]);
let expected_bindings: HashMap<Box<dyn Buttonlike>, Action> = HashMap::from([
(Box::new(KeyCode::KeyW) as Box<dyn Buttonlike>, Action::Run),
(
Box::new(KeyCode::ShiftLeft) as Box<dyn Buttonlike>,
Action::Run,
),
(Box::new(KeyCode::KeyR) as Box<dyn Buttonlike>, Action::Run),
(
Box::new(KeyCode::ShiftRight) as Box<dyn Buttonlike>,
Action::Run,
),
(
Box::new(KeyCode::Space) as Box<dyn Buttonlike>,
Action::Jump,
),
(
Box::new(KeyCode::ControlLeft) as Box<dyn Buttonlike>,
Action::Hide,
),
(
Box::new(KeyCode::ControlRight) as Box<dyn Buttonlike>,
Action::Hide,
),
]);
for (action, input) in input_map.buttonlike_bindings() {
let expected_action = expected_bindings.get(input).unwrap();
assert_eq!(expected_action, action);
}
}
#[test]
fn insertion_idempotency() {
use bevy::input::keyboard::KeyCode;
let mut input_map = InputMap::default();
input_map.insert(Action::Run, KeyCode::Space);
let expected: Vec<Box<dyn Buttonlike>> = vec![Box::new(KeyCode::Space)];
assert_eq!(input_map.get_buttonlike(&Action::Run), Some(&expected));
// Duplicate insertions should not change anything
input_map.insert(Action::Run, KeyCode::Space);
assert_eq!(input_map.get_buttonlike(&Action::Run), Some(&expected));
}
#[test]
fn multiple_insertion() {
use bevy::input::keyboard::KeyCode;
let mut input_map = InputMap::default();
input_map.insert(Action::Run, KeyCode::Space);
input_map.insert(Action::Run, KeyCode::Enter);
let expected: Vec<Box<dyn Buttonlike>> =
vec![Box::new(KeyCode::Space), Box::new(KeyCode::Enter)];
assert_eq!(input_map.get_buttonlike(&Action::Run), Some(&expected));
}
#[test]
fn input_clearing() {
use bevy::input::keyboard::KeyCode;
let mut input_map = InputMap::default();
input_map.insert(Action::Run, KeyCode::Space);
// Clearing action
input_map.clear_action(&Action::Run);
assert_eq!(input_map, InputMap::default());
// Remove input at existing index
input_map.insert(Action::Run, KeyCode::Space);
input_map.insert(Action::Run, KeyCode::ShiftLeft);
assert!(input_map.remove_at(&Action::Run, 1).is_some());
assert!(
input_map.remove_at(&Action::Run, 1).is_none(),
"Should return None on second removal at the same index"
);
assert!(input_map.remove_at(&Action::Run, 0).is_some());
assert!(
input_map.remove_at(&Action::Run, 0).is_none(),
"Should return None on second removal at the same index"
);
}
#[test]
fn merging() {
use bevy::input::keyboard::KeyCode;
let mut input_map = InputMap::default();
let mut default_keyboard_map = InputMap::default();
default_keyboard_map.insert(Action::Run, KeyCode::ShiftLeft);
default_keyboard_map.insert(
Action::Hide,
ButtonlikeChord::new([KeyCode::ControlLeft, KeyCode::KeyH]),
);
let mut default_gamepad_map = InputMap::default();
default_gamepad_map.insert(Action::Run, KeyCode::Numpad0);
default_gamepad_map.insert(Action::Hide, KeyCode::Numpad7);
// Merging works
input_map.merge(&default_keyboard_map);
assert_eq!(input_map, default_keyboard_map);
// Merging is idempotent
input_map.merge(&default_keyboard_map);
assert_eq!(input_map, default_keyboard_map);
}
#[cfg(feature = "gamepad")]
#[test]
fn gamepad_swapping() {
use bevy::input::gamepad::Gamepad;
let mut input_map = InputMap::<Action>::default();
assert_eq!(input_map.gamepad(), None);
input_map.set_gamepad(Gamepad { id: 0 });
assert_eq!(input_map.gamepad(), Some(Gamepad { id: 0 }));
input_map.clear_gamepad();
assert_eq!(input_map.gamepad(), None);
}
#[cfg(feature = "keyboard")]
#[test]
fn input_map_serde() {
use bevy::prelude::{App, KeyCode};
use serde_test::{assert_tokens, Token};
let mut app = App::new();
// Add the plugin to register input deserializers
app.add_plugins(InputManagerPlugin::<Action>::default());
let input_map = InputMap::new([(Action::Hide, KeyCode::ControlLeft)]);
assert_tokens(
&input_map,
&[
Token::Struct {
name: "InputMap",
len: 5,
},
Token::Str("buttonlike_map"),
Token::Map { len: Some(1) },
Token::UnitVariant {
name: "Action",
variant: "Hide",
},
Token::Seq { len: Some(1) },
Token::Map { len: Some(1) },
Token::BorrowedStr("KeyCode"),
Token::UnitVariant {
name: "KeyCode",
variant: "ControlLeft",
},
Token::MapEnd,
Token::SeqEnd,
Token::MapEnd,
Token::Str("axislike_map"),
Token::Map { len: Some(0) },
Token::MapEnd,
Token::Str("dual_axislike_map"),
Token::Map { len: Some(0) },
Token::MapEnd,
Token::Str("triple_axislike_map"),
Token::Map { len: Some(0) },
Token::MapEnd,
Token::Str("associated_gamepad"),
Token::None,
Token::StructEnd,
],
);
}
}