leafwing_input_manager/input_processing/dual_axis/circle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
//! Circular range processors for dual-axis inputs
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use bevy::{
math::FloatOrd,
prelude::{Reflect, Vec2},
};
use serde::{Deserialize, Serialize};
use super::DualAxisProcessor;
/// Specifies a circular region defining acceptable ranges for valid dual-axis inputs,
/// with a radius defining the maximum threshold magnitude,
/// restricting all values stay within intended limits
/// to avoid unexpected behavior caused by extreme inputs.
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// // Restrict magnitudes to no greater than 2
/// let bounds = CircleBounds::new(2.0);
///
/// for x in -300..300 {
/// let x = x as f32 * 0.01;
/// for y in -300..300 {
/// let y = y as f32 * 0.01;
/// let value = Vec2::new(x, y);
/// assert_eq!(bounds.clamp(value), value.clamp_length_max(2.0));
/// }
/// }
/// ```
#[doc(alias = "RadialBounds")]
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct CircleBounds {
/// The maximum radius of the circle.
pub(crate) radius: f32,
}
impl CircleBounds {
/// Unlimited [`CircleBounds`].
pub const FULL_RANGE: Self = Self { radius: f32::MAX };
/// Creates a [`CircleBounds`] that restricts input values to a maximum magnitude.
///
/// # Requirements
///
/// - `max` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[doc(alias = "from_radius")]
#[inline]
pub fn new(max: f32) -> Self {
assert!(max >= 0.0);
Self { radius: max }
}
/// Returns the radius of the bounds.
#[must_use]
#[inline]
pub fn radius(&self) -> f32 {
self.radius
}
/// Is the `input_value` is within the bounds?
#[must_use]
#[inline]
pub fn contains(&self, input_value: Vec2) -> bool {
input_value.length() <= self.radius
}
/// Clamps the magnitude of `input_value` within the bounds.
#[must_use]
#[inline]
pub fn clamp(&self, input_value: Vec2) -> Vec2 {
input_value.clamp_length_max(self.radius)
}
}
impl Default for CircleBounds {
/// Creates a [`CircleBounds`] that restricts the values to a maximum magnitude of `1.0`.
#[inline]
fn default() -> Self {
Self::new(1.0)
}
}
impl From<CircleBounds> for DualAxisProcessor {
fn from(value: CircleBounds) -> Self {
Self::CircleBounds(value)
}
}
impl Eq for CircleBounds {}
impl Hash for CircleBounds {
fn hash<H: Hasher>(&self, state: &mut H) {
FloatOrd(self.radius).hash(state);
}
}
/// Specifies a cross-shaped region for excluding dual-axis inputs,
/// with a radius defining the maximum excluded magnitude,
/// helping filter out minor fluctuations and unintended movements.
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// // Exclude magnitudes less than or equal to 0.2
/// let exclusion = CircleExclusion::new(0.2);
///
/// for x in -300..300 {
/// let x = x as f32 * 0.01;
/// for y in -300..300 {
/// let y = y as f32 * 0.01;
/// let value = Vec2::new(x, y);
///
/// if value.length() <= 0.2 {
/// assert!(exclusion.contains(value));
/// assert_eq!(exclusion.exclude(value), Vec2::ZERO);
/// } else {
/// assert!(!exclusion.contains(value));
/// assert_eq!(exclusion.exclude(value), value);
/// }
/// }
/// }
/// ```
#[doc(alias = "RadialExclusion")]
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct CircleExclusion {
/// Pre-calculated squared radius of the circle, preventing redundant calculations.
pub(crate) radius_squared: f32,
}
impl CircleExclusion {
/// Zero-size [`CircleExclusion`], leaving values as is.
pub const ZERO: Self = Self {
radius_squared: 0.0,
};
/// Creates a [`CircleExclusion`] that ignores input values below a minimum magnitude.
///
/// # Requirements
///
/// - `radius` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[doc(alias = "from_radius")]
#[inline]
pub fn new(threshold: f32) -> Self {
assert!(threshold >= 0.0);
Self {
radius_squared: threshold.powi(2),
}
}
/// Returns the radius of the circle.
#[must_use]
#[inline]
pub fn radius(&self) -> f32 {
self.radius_squared.sqrt()
}
/// Checks whether the `input_value` should be excluded.
#[must_use]
#[inline]
pub fn contains(&self, input_value: Vec2) -> bool {
input_value.length_squared() <= self.radius_squared
}
/// Creates a [`CircleDeadZone`] using `self` as the exclusion range.
#[inline]
pub fn scaled(self) -> CircleDeadZone {
CircleDeadZone::new(self.radius())
}
/// Excludes input values with a magnitude less than the `radius`.
#[must_use]
#[inline]
pub fn exclude(&self, input_value: Vec2) -> Vec2 {
if self.contains(input_value) {
Vec2::ZERO
} else {
input_value
}
}
}
impl Default for CircleExclusion {
/// Creates a [`CircleExclusion`] that ignores input values below a minimum magnitude of `0.1`.
fn default() -> Self {
Self::new(0.1)
}
}
impl From<CircleExclusion> for DualAxisProcessor {
fn from(value: CircleExclusion) -> Self {
Self::CircleExclusion(value)
}
}
impl Eq for CircleExclusion {}
impl Hash for CircleExclusion {
fn hash<H: Hasher>(&self, state: &mut H) {
FloatOrd(self.radius_squared).hash(state);
}
}
/// A scaled version of [`CircleExclusion`] with the bounds
/// set to [`CircleBounds::new(1.0)`](CircleBounds::default)
/// that normalizes non-excluded input values into the "live zone",
/// the remaining range within the bounds after dead zone exclusion.
///
/// It is worth considering that this normalizer reduces input values on diagonals.
/// If that is not your goal, you might want to explore alternative normalizers.
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// // Exclude magnitudes less than or equal to 0.2
/// let deadzone = CircleDeadZone::new(0.2);
///
/// for x in -300..300 {
/// let x = x as f32 * 0.01;
/// for y in -300..300 {
/// let y = y as f32 * 0.01;
/// let value = Vec2::new(x, y);
///
/// // Values within the dead zone are treated as zeros.
/// if value.length() <= 0.2 {
/// assert!(deadzone.within_exclusion(value));
/// assert_eq!(deadzone.normalize(value), Vec2::ZERO);
/// }
///
/// // Values within the live zone are scaled linearly.
/// else if value.length() <= 1.0 {
/// assert!(deadzone.within_livezone(value));
///
/// let expected_scale = f32::inverse_lerp(0.2, 1.0, value.length());
/// let expected = value.normalize() * expected_scale;
/// let delta = (deadzone.normalize(value) - expected).abs();
/// assert!(delta.x <= 0.00001);
/// assert!(delta.y <= 0.00001);
/// }
///
/// // Values outside the bounds are restricted to the region.
/// else {
/// assert!(!deadzone.within_bounds(value));
///
/// let expected = value.clamp_length_max(1.0);
/// let delta = (deadzone.normalize(value) - expected).abs();
/// assert!(delta.x <= 0.00001);
/// assert!(delta.y <= 0.00001);
/// }
/// }
/// }
/// ```
#[doc(alias = "RadialDeadZone")]
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct CircleDeadZone {
/// The radius of the circle.
pub(crate) radius: f32,
/// Pre-calculated reciprocal of the live zone size, preventing division during normalization.
pub(crate) livezone_recip: f32,
}
impl CircleDeadZone {
/// Zero-size [`CircleDeadZone`], only restricting values to a maximum magnitude of `1.0`.
pub const ZERO: Self = Self {
radius: 0.0,
livezone_recip: 1.0,
};
/// Creates a [`CircleDeadZone`] that excludes input values below a minimum magnitude.
///
/// # Requirements
///
/// - `threshold` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[doc(alias = "from_radius")]
#[inline]
pub fn new(threshold: f32) -> Self {
let bounds = CircleBounds::default();
Self {
radius: threshold,
livezone_recip: (bounds.radius - threshold).recip(),
}
}
/// Returns the radius of the circle.
#[must_use]
#[inline]
pub fn radius(&self) -> f32 {
self.radius
}
/// Returns the [`CircleExclusion`] used by this deadzone.
#[inline]
pub fn exclusion(&self) -> CircleExclusion {
CircleExclusion::new(self.radius)
}
/// Returns the [`CircleBounds`] used by this deadzone.
#[inline]
pub fn bounds(&self) -> CircleBounds {
CircleBounds::default()
}
/// Returns the minimum and maximum radii of the live zone used by this deadzone.
///
/// In simple terms, this returns `(self.radius, bounds.radius)`.
#[must_use]
#[inline]
pub fn livezone_min_max(&self) -> (f32, f32) {
(self.radius, self.bounds().radius)
}
/// Is the given `input_value` within the exclusion range?
#[must_use]
#[inline]
pub fn within_exclusion(&self, input_value: Vec2) -> bool {
self.exclusion().contains(input_value)
}
/// Is the given `input_value` within the bounds?
#[must_use]
#[inline]
pub fn within_bounds(&self, input_value: Vec2) -> bool {
self.bounds().contains(input_value)
}
/// Is the given `input_value` within the live zone?
#[must_use]
#[inline]
pub fn within_livezone(&self, input_value: Vec2) -> bool {
let input_length = input_value.length();
let (min, max) = self.livezone_min_max();
min <= input_length && input_length <= max
}
/// Normalizes input values into the live zone.
#[must_use]
pub fn normalize(&self, input_value: Vec2) -> Vec2 {
let input_length = input_value.length();
if input_length == 0.0 {
return Vec2::ZERO;
}
// Clamp out-of-bounds values to a maximum magnitude of 1.0,
// and then exclude values within the dead zone,
// and finally linearly scale the result to the live zone.
let (deadzone, bound) = self.livezone_min_max();
let clamped_input_length = input_length.min(bound);
let offset_to_deadzone = (clamped_input_length - deadzone).max(0.0);
let magnitude_scale = (offset_to_deadzone * self.livezone_recip) / input_length;
input_value * magnitude_scale
}
}
impl Default for CircleDeadZone {
/// Creates a [`CircleDeadZone`] that excludes input values below a minimum magnitude of `0.1`.
#[inline]
fn default() -> Self {
CircleDeadZone::new(0.1)
}
}
impl From<CircleDeadZone> for DualAxisProcessor {
fn from(value: CircleDeadZone) -> Self {
Self::CircleDeadZone(value)
}
}
impl Eq for CircleDeadZone {}
impl Hash for CircleDeadZone {
fn hash<H: Hasher>(&self, state: &mut H) {
FloatOrd(self.radius).hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
use bevy::prelude::FloatExt;
#[test]
fn test_circle_value_bounds() {
fn test_bounds(bounds: CircleBounds, radius: f32) {
assert_eq!(bounds.radius(), radius);
let processor = DualAxisProcessor::CircleBounds(bounds);
assert_eq!(DualAxisProcessor::from(bounds), processor);
for x in -300..300 {
let x = x as f32 * 0.01;
for y in -300..300 {
let y = y as f32 * 0.01;
let value = Vec2::new(x, y);
assert_eq!(processor.process(value), bounds.clamp(value));
if value.length() <= radius {
assert!(bounds.contains(value));
} else {
assert!(!bounds.contains(value));
}
let expected = value.clamp_length_max(radius);
let delta = (bounds.clamp(value) - expected).abs();
assert!(delta.x <= f32::EPSILON);
assert!(delta.y <= f32::EPSILON);
}
}
}
let bounds = CircleBounds::FULL_RANGE;
test_bounds(bounds, f32::MAX);
let bounds = CircleBounds::default();
test_bounds(bounds, 1.0);
let bounds = CircleBounds::new(2.0);
test_bounds(bounds, 2.0);
}
#[test]
fn test_circle_exclusion() {
fn test_exclusion(exclusion: CircleExclusion, radius: f32) {
assert_eq!(exclusion.radius(), radius);
let processor = DualAxisProcessor::CircleExclusion(exclusion);
assert_eq!(DualAxisProcessor::from(exclusion), processor);
for x in -300..300 {
let x = x as f32 * 0.01;
for y in -300..300 {
let y = y as f32 * 0.01;
let value = Vec2::new(x, y);
assert_eq!(processor.process(value), exclusion.exclude(value));
if value.length() <= radius {
assert!(exclusion.contains(value));
assert_eq!(exclusion.exclude(value), Vec2::ZERO);
} else {
assert!(!exclusion.contains(value));
assert_eq!(exclusion.exclude(value), value);
}
}
}
}
let exclusion = CircleExclusion::ZERO;
test_exclusion(exclusion, 0.0);
let exclusion = CircleExclusion::default();
test_exclusion(exclusion, 0.1);
let exclusion = CircleExclusion::new(0.5);
test_exclusion(exclusion, 0.5);
}
#[test]
fn test_circle_deadzone() {
fn test_deadzone(deadzone: CircleDeadZone, radius: f32) {
assert_eq!(deadzone.radius(), radius);
let exclusion = CircleExclusion::new(radius);
assert_eq!(exclusion.scaled(), deadzone);
let processor = DualAxisProcessor::CircleDeadZone(deadzone);
assert_eq!(DualAxisProcessor::from(deadzone), processor);
for x in -300..300 {
let x = x as f32 * 0.01;
for y in -300..300 {
let y = y as f32 * 0.01;
let value = Vec2::new(x, y);
assert_eq!(processor.process(value), deadzone.normalize(value));
// Values within the dead zone are treated as zeros.
if value.length() <= radius {
assert!(deadzone.within_exclusion(value));
assert_eq!(deadzone.normalize(value), Vec2::ZERO);
}
// Values within the live zone are scaled linearly.
else if value.length() <= 1.0 {
assert!(deadzone.within_livezone(value));
let expected_scale = f32::inverse_lerp(radius, 1.0, value.length());
let expected = value.normalize() * expected_scale;
let delta = (deadzone.normalize(value) - expected).abs();
assert!(delta.x <= 0.00001);
assert!(delta.y <= 0.00001);
}
// Values outside the bounds are restricted to the region.
else {
assert!(!deadzone.within_bounds(value));
let expected = value.clamp_length_max(1.0);
let delta = (deadzone.normalize(value) - expected).abs();
assert!(delta.x <= 0.00001);
assert!(delta.y <= 0.00001);
}
}
}
}
let deadzone = CircleDeadZone::ZERO;
test_deadzone(deadzone, 0.0);
let deadzone = CircleDeadZone::default();
test_deadzone(deadzone, 0.1);
let deadzone = CircleDeadZone::new(0.5);
test_deadzone(deadzone, 0.5);
}
}