leafwing_input_manager/user_input/
keyboard.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
//! Keyboard inputs

use bevy::input::keyboard::{Key, KeyboardInput, NativeKey};
use bevy::input::{ButtonInput, ButtonState};
use bevy::prelude::{Entity, Events, Gamepad, KeyCode, Reflect, Res, ResMut, Vec2, Vec3, World};
use leafwing_input_manager_macros::serde_typetag;
use serde::{Deserialize, Serialize};

use crate as leafwing_input_manager;
use crate::clashing_inputs::BasicInputs;
use crate::input_processing::{
    AxisProcessor, DualAxisProcessor, WithAxisProcessingPipelineExt,
    WithDualAxisProcessingPipelineExt,
};
use crate::user_input::{ButtonlikeChord, TripleAxislike, UserInput};
use crate::InputControlKind;

use super::updating::{CentralInputStore, UpdatableInput};
use super::{Axislike, Buttonlike, DualAxislike};

// Built-in support for Bevy's KeyCode
impl UserInput for KeyCode {
    /// [`KeyCode`] acts as a button.
    #[inline]
    fn kind(&self) -> InputControlKind {
        InputControlKind::Button
    }

    /// Returns a [`BasicInputs`] that only contains the [`KeyCode`] itself,
    /// as it represents a simple physical button.
    #[inline]
    fn decompose(&self) -> BasicInputs {
        BasicInputs::Simple(Box::new(*self))
    }
}

impl UpdatableInput for KeyCode {
    type SourceData = ButtonInput<KeyCode>;

    fn compute(
        mut central_input_store: ResMut<CentralInputStore>,
        source_data: Res<Self::SourceData>,
    ) {
        for key in source_data.get_pressed() {
            central_input_store.update_buttonlike(*key, true);
        }

        for key in source_data.get_just_released() {
            central_input_store.update_buttonlike(*key, false);
        }
    }
}

#[serde_typetag]
impl Buttonlike for KeyCode {
    /// Checks if the specified key is currently pressed down.
    #[must_use]
    #[inline]
    fn pressed(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> bool {
        input_store.pressed(self)
    }

    /// Sends a fake [`KeyboardInput`] event to the world with [`ButtonState::Pressed`].
    ///
    /// # Note
    ///
    /// The `logical_key` and `window` fields will be filled with placeholder values.
    fn press(&self, world: &mut World) {
        let mut events = world.resource_mut::<Events<KeyboardInput>>();
        events.send(KeyboardInput {
            key_code: *self,
            logical_key: Key::Unidentified(NativeKey::Unidentified),
            state: ButtonState::Pressed,
            window: Entity::PLACEHOLDER,
        });
    }

    /// Sends a fake [`KeyboardInput`] event to the world with [`ButtonState::Released`].
    ///
    /// # Note
    ///
    /// The `logical_key` and `window` fields will be filled with placeholder values.
    fn release(&self, world: &mut World) {
        let mut events = world.resource_mut::<Events<KeyboardInput>>();
        events.send(KeyboardInput {
            key_code: *self,
            logical_key: Key::Unidentified(NativeKey::Unidentified),
            state: ButtonState::Released,
            window: Entity::PLACEHOLDER,
        });
    }
}

/// Keyboard modifiers like Alt, Control, Shift, and Super (OS symbol key).
///
/// Each variant represents a pair of [`KeyCode`]s, the left and right version of the modifier key,
/// allowing for handling modifiers regardless of which side is pressed.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub enum ModifierKey {
    /// The Alt key, representing either [`KeyCode::AltLeft`] or [`KeyCode::AltRight`].
    Alt,

    /// The Control key, representing either [`KeyCode::ControlLeft`] or [`KeyCode::ControlRight`].
    Control,

    /// The Shift key, representing either [`KeyCode::ShiftLeft`] or [`KeyCode::ShiftRight`].
    Shift,

    /// The Super (OS symbol) key, representing either [`KeyCode::SuperLeft`] or [`KeyCode::SuperRight`].
    Super,
}

impl ModifierKey {
    /// Returns a pair of [`KeyCode`]s corresponding to both modifier keys.
    #[must_use]
    #[inline]
    pub const fn keycodes(&self) -> [KeyCode; 2] {
        [self.left(), self.right()]
    }

    /// Returns the [`KeyCode`] corresponding to the left modifier key.
    #[must_use]
    #[inline]
    pub const fn left(&self) -> KeyCode {
        match self {
            ModifierKey::Alt => KeyCode::AltLeft,
            ModifierKey::Control => KeyCode::ControlLeft,
            ModifierKey::Shift => KeyCode::ShiftLeft,
            ModifierKey::Super => KeyCode::SuperLeft,
        }
    }

    /// Returns the [`KeyCode`] corresponding to the right modifier key.
    #[must_use]
    #[inline]
    pub const fn right(&self) -> KeyCode {
        match self {
            ModifierKey::Alt => KeyCode::AltRight,
            ModifierKey::Control => KeyCode::ControlRight,
            ModifierKey::Shift => KeyCode::ShiftRight,
            ModifierKey::Super => KeyCode::SuperRight,
        }
    }

    /// Create an [`ButtonlikeChord`] that includes this [`ModifierKey`] and the given `input`.
    #[inline]
    pub fn with(&self, other: impl Buttonlike) -> ButtonlikeChord {
        ButtonlikeChord::from_single(*self).with(other)
    }
}

impl UserInput for ModifierKey {
    /// [`ModifierKey`] acts as a button.
    #[inline]
    fn kind(&self) -> InputControlKind {
        InputControlKind::Button
    }

    /// Returns the two [`KeyCode`]s used by this [`ModifierKey`].
    #[inline]
    fn decompose(&self) -> BasicInputs {
        BasicInputs::Composite(vec![Box::new(self.left()), Box::new(self.right())])
    }
}

#[serde_typetag]
impl Buttonlike for ModifierKey {
    /// Checks if the specified modifier key is currently pressed down.
    #[must_use]
    #[inline]
    fn pressed(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> bool {
        input_store.pressed(&self.left()) || input_store.pressed(&self.right())
    }

    /// Sends a fake [`KeyboardInput`] event to the world with [`ButtonState::Pressed`].
    ///
    /// The left and right keys will be pressed simultaneously.
    ///
    /// # Note
    ///
    /// The `logical_key` and `window` fields will be filled with placeholder values.
    fn press(&self, world: &mut World) {
        self.left().press(world);
        self.right().press(world);
    }

    /// Sends a fake [`KeyboardInput`] event to the world with [`ButtonState::Released`].
    ///
    /// The left and right keys will be released simultaneously.
    ///
    /// # Note
    ///
    /// The `logical_key` and `window` fields will be filled with placeholder values.
    fn release(&self, world: &mut World) {
        self.left().release(world);
        self.right().release(world);
    }
}

/// A virtual single-axis control constructed from two [`KeyCode`]s.
/// One key represents the negative direction (left for the X-axis, down for the Y-axis),
/// while the other represents the positive direction (right for the X-axis, up for the Y-axis).
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithAxisProcessingPipelineExt`] for details.
///
/// The raw value is determined based on the state of the associated buttons:
/// - `-1.0` if only the negative button is currently pressed.
/// - `1.0` if only the positive button is currently pressed.
/// - `0.0` if neither button is pressed, or both are pressed simultaneously.
///
/// ```rust
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
/// use leafwing_input_manager::user_input::testing_utils::FetchUserInput;
/// use leafwing_input_manager::plugin::{AccumulatorPlugin, CentralInputStorePlugin};
///
/// let mut app = App::new();
/// app.add_plugins((InputPlugin, AccumulatorPlugin, CentralInputStorePlugin));
///
/// // Define a virtual Y-axis using arrow "up" and "down" keys
/// let axis = KeyboardVirtualAxis::VERTICAL_ARROW_KEYS;
///
/// // Pressing either key activates the input
/// KeyCode::ArrowUp.press(app.world_mut());
/// app.update();
/// assert_eq!(app.read_axis_value(axis), 1.0);
///
/// // You can configure a processing pipeline (e.g., doubling the value)
/// let doubled = KeyboardVirtualAxis::VERTICAL_ARROW_KEYS.sensitivity(2.0);
/// assert_eq!(app.read_axis_value(doubled), 2.0);
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct KeyboardVirtualAxis {
    /// The key that represents the negative direction.
    pub(crate) negative: KeyCode,

    /// The key that represents the positive direction.
    pub(crate) positive: KeyCode,

    /// A processing pipeline that handles input values.
    pub(crate) processors: Vec<AxisProcessor>,
}

impl KeyboardVirtualAxis {
    /// Creates a new [`KeyboardVirtualAxis`] with two given [`KeyCode`]s.
    /// No processing is applied to raw data from the gamepad.
    #[inline]
    pub fn new(negative: KeyCode, positive: KeyCode) -> Self {
        Self {
            negative,
            positive,
            processors: Vec::new(),
        }
    }

    /// The [`KeyboardVirtualAxis`] using the vertical arrow key mappings.
    ///
    /// - [`KeyCode::ArrowDown`] for negative direction.
    /// - [`KeyCode::ArrowUp`] for positive direction.
    pub const VERTICAL_ARROW_KEYS: Self = Self {
        negative: KeyCode::ArrowDown,
        positive: KeyCode::ArrowUp,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualAxis`] using the horizontal arrow key mappings.
    ///
    /// - [`KeyCode::ArrowLeft`] for negative direction.
    /// - [`KeyCode::ArrowRight`] for positive direction.
    pub const HORIZONTAL_ARROW_KEYS: Self = Self {
        negative: KeyCode::ArrowLeft,
        positive: KeyCode::ArrowRight,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualAxis`] using the common W/S key mappings.
    ///
    /// - [`KeyCode::KeyS`] for negative direction.
    /// - [`KeyCode::KeyW`] for positive direction.
    pub const WS: Self = Self {
        negative: KeyCode::KeyS,
        positive: KeyCode::KeyW,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualAxis`] using the common A/D key mappings.
    ///
    /// - [`KeyCode::KeyA`] for negative direction.
    /// - [`KeyCode::KeyD`] for positive direction.
    pub const AD: Self = Self {
        negative: KeyCode::KeyA,
        positive: KeyCode::KeyD,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualAxis`] using the vertical numpad key mappings.
    ///
    /// - [`KeyCode::Numpad2`] for negative direction.
    /// - [`KeyCode::Numpad8`] for positive direction.
    pub const VERTICAL_NUMPAD: Self = Self {
        negative: KeyCode::Numpad2,
        positive: KeyCode::Numpad8,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualAxis`] using the horizontal numpad key mappings.
    ///
    /// - [`KeyCode::Numpad4`] for negative direction.
    /// - [`KeyCode::Numpad6`] for positive direction.
    pub const HORIZONTAL_NUMPAD: Self = Self {
        negative: KeyCode::Numpad4,
        positive: KeyCode::Numpad6,
        processors: Vec::new(),
    };
}

impl UserInput for KeyboardVirtualAxis {
    /// [`KeyboardVirtualAxis`] acts as a virtual axis input.
    #[inline]
    fn kind(&self) -> InputControlKind {
        InputControlKind::Axis
    }

    /// [`KeyboardVirtualAxis`] represents a compositions of two [`KeyCode`]s.
    #[inline]
    fn decompose(&self) -> BasicInputs {
        BasicInputs::Composite(vec![Box::new(self.negative), Box::new(self.negative)])
    }
}

#[serde_typetag]
impl Axislike for KeyboardVirtualAxis {
    /// Retrieves the current value of this axis after processing by the associated processors.
    #[must_use]
    #[inline]
    fn value(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> f32 {
        let negative = f32::from(input_store.pressed(&self.negative));
        let positive = f32::from(input_store.pressed(&self.positive));
        let value = positive - negative;
        self.processors
            .iter()
            .fold(value, |value, processor| processor.process(value))
    }

    /// Sends a [`KeyboardInput`] event.
    ///
    /// If the value is negative, the negative button is pressed.
    /// If the value is positive, the positive button is pressed.
    /// If the value is zero, neither button is pressed.
    fn set_value(&self, world: &mut World, value: f32) {
        if value < 0.0 {
            self.negative.press(world);
        } else if value > 0.0 {
            self.positive.press(world);
        }
    }
}

impl WithAxisProcessingPipelineExt for KeyboardVirtualAxis {
    #[inline]
    fn reset_processing_pipeline(mut self) -> Self {
        self.processors.clear();
        self
    }

    #[inline]
    fn replace_processing_pipeline(
        mut self,
        processors: impl IntoIterator<Item = AxisProcessor>,
    ) -> Self {
        self.processors = processors.into_iter().collect();
        self
    }

    #[inline]
    fn with_processor(mut self, processor: impl Into<AxisProcessor>) -> Self {
        self.processors.push(processor.into());
        self
    }
}

/// A virtual dual-axis control constructed from four [`KeyCode`]s.
/// Each key represents a specific direction (up, down, left, right),
/// functioning similarly to a directional pad (D-pad) on both X and Y axes,
/// and offering intermediate diagonals by means of two-key combinations.
///
/// # Value Processing
///
/// You can customize how the values are processed using a pipeline of processors.
/// See [`WithDualAxisProcessingPipelineExt`] for details.
///
/// The raw axis values are determined based on the state of the associated buttons:
/// - `-1.0` if only the negative button is currently pressed (Down/Left).
/// - `1.0` if only the positive button is currently pressed (Up/Right).
/// - `0.0` if neither button is pressed, or both are pressed simultaneously.
///
/// ```rust
/// use bevy::prelude::*;
/// use bevy::input::InputPlugin;
/// use leafwing_input_manager::prelude::*;
/// use leafwing_input_manager::user_input::testing_utils::FetchUserInput;
/// use leafwing_input_manager::plugin::{AccumulatorPlugin, CentralInputStorePlugin};
///
/// let mut app = App::new();
/// app.add_plugins((InputPlugin, AccumulatorPlugin, CentralInputStorePlugin));
///
/// // Define a virtual D-pad using the arrow keys
/// let input = KeyboardVirtualDPad::ARROW_KEYS;
///
/// // Pressing an arrow key activates the corresponding axis
/// KeyCode::ArrowUp.press(app.world_mut());
/// app.update();
/// assert_eq!(app.read_dual_axis_values(input), Vec2::new(0.0, 1.0));
///
/// // You can configure a processing pipeline (e.g., doubling the Y value)
/// let doubled = KeyboardVirtualDPad::ARROW_KEYS.sensitivity_y(2.0);
/// assert_eq!(app.read_dual_axis_values(doubled), Vec2::new(0.0, 2.0));
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct KeyboardVirtualDPad {
    /// The key for the upward direction.
    pub(crate) up: KeyCode,

    /// The key for the downward direction.
    pub(crate) down: KeyCode,

    /// The key for the leftward direction.
    pub(crate) left: KeyCode,

    /// The key for the rightward direction.
    pub(crate) right: KeyCode,

    /// A processing pipeline that handles input values.
    pub(crate) processors: Vec<DualAxisProcessor>,
}

impl KeyboardVirtualDPad {
    /// Creates a new [`KeyboardVirtualDPad`] with four given [`KeyCode`]s.
    /// No processing is applied to raw data from the keyboard.
    #[inline]
    pub fn new(up: KeyCode, down: KeyCode, left: KeyCode, right: KeyCode) -> Self {
        Self {
            up,
            down,
            left,
            right,
            processors: Vec::new(),
        }
    }

    /// The [`KeyboardVirtualDPad`] using the common arrow key mappings.
    ///
    /// - [`KeyCode::ArrowUp`] for upward direction.
    /// - [`KeyCode::ArrowDown`] for downward direction.
    /// - [`KeyCode::ArrowLeft`] for leftward direction.
    /// - [`KeyCode::ArrowRight`] for rightward direction.
    pub const ARROW_KEYS: Self = Self {
        up: KeyCode::ArrowUp,
        down: KeyCode::ArrowDown,
        left: KeyCode::ArrowLeft,
        right: KeyCode::ArrowRight,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualDPad`] using the common WASD key mappings.
    ///
    /// - [`KeyCode::KeyW`] for upward direction.
    /// - [`KeyCode::KeyS`] for downward direction.
    /// - [`KeyCode::KeyA`] for leftward direction.
    /// - [`KeyCode::KeyD`] for rightward direction.
    pub const WASD: Self = Self {
        up: KeyCode::KeyW,
        down: KeyCode::KeyS,
        left: KeyCode::KeyA,
        right: KeyCode::KeyD,
        processors: Vec::new(),
    };

    /// The [`KeyboardVirtualDPad`] using the common numpad key mappings.
    ///
    /// - [`KeyCode::Numpad8`] for upward direction.
    /// - [`KeyCode::Numpad2`] for downward direction.
    /// - [`KeyCode::Numpad4`] for leftward direction.
    /// - [`KeyCode::Numpad6`] for rightward direction.
    pub const NUMPAD: Self = Self {
        up: KeyCode::Numpad8,
        down: KeyCode::Numpad2,
        left: KeyCode::Numpad4,
        right: KeyCode::Numpad6,
        processors: Vec::new(),
    };
}

impl UserInput for KeyboardVirtualDPad {
    /// [`KeyboardVirtualDPad`] acts as a virtual dual-axis input.
    #[inline]
    fn kind(&self) -> InputControlKind {
        InputControlKind::DualAxis
    }

    /// [`KeyboardVirtualDPad`] represents a compositions of four [`KeyCode`]s.
    #[inline]
    fn decompose(&self) -> BasicInputs {
        BasicInputs::Composite(vec![
            Box::new(self.up),
            Box::new(self.down),
            Box::new(self.left),
            Box::new(self.right),
        ])
    }
}

#[serde_typetag]
impl DualAxislike for KeyboardVirtualDPad {
    /// Retrieves the current X and Y values of this D-pad after processing by the associated processors.
    #[must_use]
    #[inline]
    fn axis_pair(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> Vec2 {
        let up = f32::from(input_store.pressed(&self.up));
        let down = f32::from(input_store.pressed(&self.down));
        let left = f32::from(input_store.pressed(&self.left));
        let right = f32::from(input_store.pressed(&self.right));
        let value = Vec2::new(right - left, up - down);
        self.processors
            .iter()
            .fold(value, |value, processor| processor.process(value))
    }

    /// Presses the corresponding buttons based on the quadrant of the given value.
    fn set_axis_pair(&self, world: &mut World, value: Vec2) {
        if value.x < 0.0 {
            self.left.press(world);
        } else if value.x > 0.0 {
            self.right.press(world);
        }

        if value.y < 0.0 {
            self.down.press(world);
        } else if value.y > 0.0 {
            self.up.press(world);
        }
    }
}

impl WithDualAxisProcessingPipelineExt for KeyboardVirtualDPad {
    #[inline]
    fn reset_processing_pipeline(mut self) -> Self {
        self.processors.clear();
        self
    }

    #[inline]
    fn replace_processing_pipeline(
        mut self,
        processors: impl IntoIterator<Item = DualAxisProcessor>,
    ) -> Self {
        self.processors = processors.into_iter().collect();
        self
    }

    #[inline]
    fn with_processor(mut self, processor: impl Into<DualAxisProcessor>) -> Self {
        self.processors.push(processor.into());
        self
    }
}

/// A virtual triple-axis control constructed from six [`KeyCode`]s.
/// Each key represents a specific direction (up, down, left, right, forward, backward),
/// functioning similarly to a three-dimensional directional pad (D-pad) on all X, Y, and Z axes,
/// and offering intermediate diagonals by means of two/three-key combinations.
///
/// The raw axis values are determined based on the state of the associated buttons:
/// - `-1.0` if only the negative button is currently pressed (Down/Left/Forward).
/// - `1.0` if only the positive button is currently pressed (Up/Right/Backward).
/// - `0.0` if neither button is pressed, or both are pressed simultaneously.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct KeyboardVirtualDPad3D {
    /// The key for the upward direction.
    pub(crate) up: KeyCode,

    /// The key for the downward direction.
    pub(crate) down: KeyCode,

    /// The key for the leftward direction.
    pub(crate) left: KeyCode,

    /// The key for the rightward direction.
    pub(crate) right: KeyCode,

    /// The key for the forward direction.
    pub(crate) forward: KeyCode,

    /// The key for the backward direction.
    pub(crate) backward: KeyCode,
}

impl KeyboardVirtualDPad3D {
    /// Creates a new [`KeyboardVirtualDPad3D`] with six given [`KeyCode`]s.
    /// No processing is applied to raw data from the keyboard.
    #[inline]
    pub fn new(
        up: KeyCode,
        down: KeyCode,
        left: KeyCode,
        right: KeyCode,
        forward: KeyCode,
        backward: KeyCode,
    ) -> Self {
        Self {
            up,
            down,
            left,
            right,
            forward,
            backward,
        }
    }
}

impl UserInput for KeyboardVirtualDPad3D {
    /// [`KeyboardVirtualDPad3D`] acts as a virtual triple-axis input.
    #[inline]
    fn kind(&self) -> InputControlKind {
        InputControlKind::TripleAxis
    }

    /// [`KeyboardVirtualDPad3D`] represents a compositions of six [`KeyCode`]s.
    #[inline]
    fn decompose(&self) -> BasicInputs {
        BasicInputs::Composite(vec![
            Box::new(self.up),
            Box::new(self.down),
            Box::new(self.left),
            Box::new(self.right),
            Box::new(self.forward),
            Box::new(self.backward),
        ])
    }
}

#[serde_typetag]
impl TripleAxislike for KeyboardVirtualDPad3D {
    /// Retrieves the current X, Y, and Z values of this D-pad.
    #[must_use]
    #[inline]
    fn axis_triple(&self, input_store: &CentralInputStore, _gamepad: Gamepad) -> Vec3 {
        let up = f32::from(input_store.pressed(&self.up));
        let down = f32::from(input_store.pressed(&self.down));
        let left = f32::from(input_store.pressed(&self.left));
        let right = f32::from(input_store.pressed(&self.right));
        let forward = f32::from(input_store.pressed(&self.left));
        let back = f32::from(input_store.pressed(&self.right));
        Vec3::new(right - left, up - down, back - forward)
    }

    /// Presses the corresponding buttons based on the octant of the given value.
    fn set_axis_triple(&self, world: &mut World, value: Vec3) {
        if value.x < 0.0 {
            self.left.press(world);
        } else if value.x > 0.0 {
            self.right.press(world);
        }

        if value.y < 0.0 {
            self.down.press(world);
        } else if value.y > 0.0 {
            self.up.press(world);
        }

        if value.z < 0.0 {
            self.forward.press(world);
        } else if value.z > 0.0 {
            self.backward.press(world);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::plugin::{AccumulatorPlugin, CentralInputStorePlugin};
    use bevy::input::InputPlugin;
    use bevy::prelude::*;

    fn test_app() -> App {
        let mut app = App::new();
        app.add_plugins(InputPlugin)
            .add_plugins((AccumulatorPlugin, CentralInputStorePlugin));
        app
    }

    #[test]
    fn test_keyboard_input() {
        let up = KeyCode::ArrowUp;
        assert_eq!(up.kind(), InputControlKind::Button);

        let left = KeyCode::ArrowLeft;
        assert_eq!(left.kind(), InputControlKind::Button);

        let alt = ModifierKey::Alt;
        assert_eq!(alt.kind(), InputControlKind::Button);

        let arrow_y = KeyboardVirtualAxis::VERTICAL_ARROW_KEYS;
        assert_eq!(arrow_y.kind(), InputControlKind::Axis);

        let arrows = KeyboardVirtualDPad::ARROW_KEYS;
        assert_eq!(arrows.kind(), InputControlKind::DualAxis);

        // No inputs
        let zeros = Vec2::new(0.0, 0.0);
        let mut app = test_app();
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        let gamepad = Gamepad::new(0);

        assert!(!up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), 0.0);
        assert_eq!(arrows.axis_pair(inputs, gamepad), zeros);

        // Press arrow up
        let data = Vec2::new(0.0, 1.0);
        let mut app = test_app();
        KeyCode::ArrowUp.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), data.y);
        assert_eq!(arrows.axis_pair(inputs, gamepad), data);

        // Press arrow down
        let data = Vec2::new(0.0, -1.0);
        let mut app = test_app();
        KeyCode::ArrowDown.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(!up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), data.y);
        assert_eq!(arrows.axis_pair(inputs, gamepad), data);

        // Press arrow left
        let data = Vec2::new(-1.0, 0.0);
        let mut app = test_app();
        KeyCode::ArrowLeft.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(!up.pressed(inputs, gamepad));
        assert!(left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), 0.0);
        assert_eq!(arrows.axis_pair(inputs, gamepad), data);

        // Press arrow down and arrow up
        let mut app = test_app();
        KeyCode::ArrowDown.press(app.world_mut());
        KeyCode::ArrowUp.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), 0.0);
        assert_eq!(arrows.axis_pair(inputs, gamepad), zeros);

        // Press arrow left and arrow up
        let data = Vec2::new(-1.0, 1.0);
        let mut app = test_app();
        KeyCode::ArrowLeft.press(app.world_mut());
        KeyCode::ArrowUp.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(up.pressed(inputs, gamepad));
        assert!(left.pressed(inputs, gamepad));
        assert!(!alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), data.y);
        assert_eq!(arrows.axis_pair(inputs, gamepad), data);

        // Press left Alt
        let mut app = test_app();
        KeyCode::AltLeft.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(!up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), 0.0);
        assert_eq!(arrows.axis_pair(inputs, gamepad), zeros);

        // Press right Alt
        let mut app = test_app();
        KeyCode::AltRight.press(app.world_mut());
        app.update();
        let inputs = app.world().resource::<CentralInputStore>();

        assert!(!up.pressed(inputs, gamepad));
        assert!(!left.pressed(inputs, gamepad));
        assert!(alt.pressed(inputs, gamepad));
        assert_eq!(arrow_y.value(inputs, gamepad), 0.0);
        assert_eq!(arrows.axis_pair(inputs, gamepad), zeros);
    }
}