linear_map::set

Struct LinearSet

Source
pub struct LinearSet<T> { /* private fields */ }
Expand description

An implementation of a set using the underlying representation of a LinearMap where the value is ().

§Examples

use linear_map::set::LinearSet;;
// Type inference lets us omit an explicit type signature (which
// would be `LinearSet<&str>` in this example).
let mut books = LinearSet::new();

// Add some books.
books.insert("A Dance With Dragons");
books.insert("To Kill a Mockingbird");
books.insert("The Odyssey");
books.insert("The Great Gatsby");

// Check for a specific one.
if !books.contains("The Winds of Winter") {
    println!("We have {} books, but The Winds of Winter ain't one.",
             books.len());
}

// Remove a book.
books.remove("The Odyssey");

// Iterate over everything.
for book in &books {
    println!("{}", book);
}

The easiest way to use LinearSet with a custom type is to derive Eq. We must also derive PartialEq, this will in the future be implied by Eq.

use linear_map::set::LinearSet;;
#[derive(Eq, PartialEq, Debug)]
struct Viking<'a> {
    name: &'a str,
    power: usize,
}

let mut vikings = LinearSet::new();

vikings.insert(Viking { name: "Einar", power: 9 });
vikings.insert(Viking { name: "Einar", power: 9 });
vikings.insert(Viking { name: "Olaf", power: 4 });
vikings.insert(Viking { name: "Harald", power: 8 });

// Use derived implementation to print the vikings.
for x in &vikings {
    println!("{:?}", x);
}

Implementations§

Source§

impl<T: Eq> LinearSet<T>

Source

pub fn new() -> LinearSet<T>

Creates an empty LinearSet.

§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::new();
Source

pub fn with_capacity(capacity: usize) -> LinearSet<T>

Creates an empty LinearSet with space for at least n elements in the map.

§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::with_capacity(10);
Source§

impl<T> LinearSet<T>
where T: Eq,

Source

pub fn capacity(&self) -> usize

Returns the number of elements the set can hold without reallocating.

§Examples
use linear_map::set::LinearSet;;
let set: LinearSet<i32> = LinearSet::with_capacity(100);
assert!(set.capacity() >= 100);
Source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the LinearSet. The collection may reserve more space to avoid frequent reallocations.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::new();
set.reserve(10);
Source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use linear_map::set::LinearSet;;

let mut set = LinearSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);
Source

pub fn iter(&self) -> Iter<'_, T>

An iterator visiting all elements in arbitrary order. Iterator element type is &’a T.

§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
set.insert("a");
set.insert("b");

// Will print in an arbitrary order.
for x in set.iter() {
    println!("{}", x);
}
Source

pub fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T>

Visit the values representing the difference.

§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1
}

let diff: LinearSet<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1].iter().cloned().collect());

// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: LinearSet<_> = b.difference(&a).cloned().collect();
assert_eq!(diff, [4].iter().cloned().collect());
Source

pub fn symmetric_difference<'a>( &'a self, other: &'a LinearSet<T>, ) -> SymmetricDifference<'a, T>

Visit the values representing the symmetric difference.

§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

let diff1: LinearSet<_> = a.symmetric_difference(&b).cloned().collect();
let diff2: LinearSet<_> = b.symmetric_difference(&a).cloned().collect();

assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().cloned().collect());
Source

pub fn intersection<'a>( &'a self, other: &'a LinearSet<T>, ) -> Intersection<'a, T>

Visit the values representing the intersection.

§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
    println!("{}", x);
}

let intersection: LinearSet<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2, 3].iter().cloned().collect());
Source

pub fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T>

Visit the values representing the union.

§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
    println!("{}", x);
}

let union: LinearSet<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2, 3, 4].iter().cloned().collect());
Source

pub fn len(&self) -> usize

Returns the number of elements in the set.

§Examples
use linear_map::set::LinearSet;;

let mut v = LinearSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);
Source

pub fn is_empty(&self) -> bool

Returns true if the set contains no elements.

§Examples
use linear_map::set::LinearSet;;

let mut v = LinearSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());
Source

pub fn drain(&mut self) -> Drain<'_, T>

Clears the set, returning all elements in an iterator.

Source

pub fn clear(&mut self)

Clears the set, removing all values.

§Examples
use linear_map::set::LinearSet;;

let mut v = LinearSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());
Source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&T) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all elements e such that f(&e) returns false.

Source

pub fn contains<Q>(&self, value: &Q) -> bool
where T: Borrow<Q>, Q: Eq + ?Sized,

Returns true if the set contains a value.

The value may be any borrowed form of the set’s value type, but Eq on the borrowed form must match those for the value type.

§Examples
use linear_map::set::LinearSet;;

let set: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
Source

pub fn is_disjoint(&self, other: &LinearSet<T>) -> bool

Returns true if the set has no elements in common with other. This is equivalent to checking for an empty intersection.

§Examples
use linear_map::set::LinearSet;;

let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = LinearSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
Source

pub fn is_subset(&self, other: &LinearSet<T>) -> bool

Returns true if the set is a subset of another.

§Examples
use linear_map::set::LinearSet;;

let sup: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = LinearSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
Source

pub fn is_superset(&self, other: &LinearSet<T>) -> bool

Returns true if the set is a superset of another.

§Examples
use linear_map::set::LinearSet;;

let sub: LinearSet<_> = [1, 2].iter().cloned().collect();
let mut set = LinearSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);
Source

pub fn insert(&mut self, value: T) -> bool

Adds a value to the set.

If the set did not have a value present, true is returned.

If the set did have this key present, false is returned.

§Examples
use linear_map::set::LinearSet;;

let mut set = LinearSet::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
Source

pub fn remove<Q>(&mut self, value: &Q) -> bool
where T: Borrow<Q>, Q: Eq + ?Sized,

Removes a value from the set. Returns true if the value was present in the set.

The value may be any borrowed form of the set’s value type, but Eq on the borrowed form must match those for the value type.

§Examples
use linear_map::set::LinearSet;;

let mut set = LinearSet::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);

Trait Implementations§

Source§

impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone,

Source§

fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T>

Returns the intersection of self and rhs as a new LinearSet<T>.

§Examples
use linear_map::set::LinearSet;;

let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![2, 3, 4].into_iter().collect();

let set = &a & &b;

let mut i = 0;
let expected = [2, 3];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
Source§

type Output = LinearSet<T>

The resulting type after applying the & operator.
Source§

impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone,

Source§

fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T>

Returns the union of self and rhs as a new LinearSet<T>.

§Examples
use linear_map::set::LinearSet;;

let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a | &b;

let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
Source§

type Output = LinearSet<T>

The resulting type after applying the | operator.
Source§

impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone,

Source§

fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T>

Returns the symmetric difference of self and rhs as a new LinearSet<T>.

§Examples
use linear_map::set::LinearSet;;

let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a ^ &b;

let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
Source§

type Output = LinearSet<T>

The resulting type after applying the ^ operator.
Source§

impl<T: Clone> Clone for LinearSet<T>

Source§

fn clone(&self) -> LinearSet<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> Debug for LinearSet<T>
where T: Eq + Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<T> Default for LinearSet<T>
where T: Eq,

Source§

fn default() -> LinearSet<T>

Returns the “default value” for a type. Read more
Source§

impl<'a, T> Extend<&'a T> for LinearSet<T>
where T: 'a + Eq + Copy,

Source§

fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
Source§

impl<T> Extend<T> for LinearSet<T>
where T: Eq,

Source§

fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
Source§

impl<T> FromIterator<T> for LinearSet<T>
where T: Eq,

Source§

fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> LinearSet<T>

Creates a value from an iterator. Read more
Source§

impl<K: Eq> Into<Vec<K>> for LinearSet<K>

Source§

fn into(self) -> Vec<K>

Converts this type into the (usually inferred) input type.
Source§

impl<'a, T> IntoIterator for &'a LinearSet<T>
where T: Eq,

Source§

type Item = &'a T

The type of the elements being iterated over.
Source§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> Iter<'a, T>

Creates an iterator from a value. Read more
Source§

impl<T> IntoIterator for LinearSet<T>
where T: Eq,

Source§

fn into_iter(self) -> IntoIter<T>

Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.

§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
set.insert("a".to_string());
set.insert("b".to_string());

// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();

// Will print in an arbitrary order.
for x in &v {
    println!("{}", x);
}
Source§

type Item = T

The type of the elements being iterated over.
Source§

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?
Source§

impl<T> PartialEq for LinearSet<T>
where T: Eq,

Source§

fn eq(&self, other: &LinearSet<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone,

Source§

fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T>

Returns the difference of self and rhs as a new LinearSet<T>.

§Examples
use linear_map::set::LinearSet;;

let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
Source§

type Output = LinearSet<T>

The resulting type after applying the - operator.
Source§

impl<T> Eq for LinearSet<T>
where T: Eq,

Auto Trait Implementations§

§

impl<T> Freeze for LinearSet<T>

§

impl<T> RefUnwindSafe for LinearSet<T>
where T: RefUnwindSafe,

§

impl<T> Send for LinearSet<T>
where T: Send,

§

impl<T> Sync for LinearSet<T>
where T: Sync,

§

impl<T> Unpin for LinearSet<T>
where T: Unpin,

§

impl<T> UnwindSafe for LinearSet<T>
where T: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.