linfa_linalg/lobpcg/
algorithm.rs

1//! Locally Optimal Block Preconditioned Conjugated
2//!
3//! This module implements the Locally Optimal Block Preconditioned Conjugated (LOBPCG) algorithm,
4//!  which can be used as a solver for large symmetric eigenproblems.
5use ndarray::concatenate;
6use ndarray::prelude::*;
7use num_traits::NumCast;
8use std::iter::Sum;
9
10use crate::{cholesky::*, eigh::*, norm::*, triangular::*};
11use crate::{LinalgError, Order, Result};
12
13use super::{Lobpcg, LobpcgResult};
14
15/// Solve the generalized eigenvalue problem with pencil (A, B)
16fn generalized_eig<A: NdFloat>(a: Array2<A>, b: Array2<A>) -> Result<(Array1<A>, Array2<A>)> {
17    let (vals_b, vecs_b) = b.eigh_into()?;
18    let vals_b_recip = vals_b.mapv_into(|x| (x.max(A::from(1e-10f32).unwrap())).sqrt().recip());
19    let vecs_b_tilde = vecs_b * vals_b_recip;
20    let a_tilde = vecs_b_tilde.t().dot(&a.dot(&vecs_b_tilde));
21    let (vals_a, vecs_a) = a_tilde.eigh_into()?;
22    let vecs = vecs_b_tilde.dot(&vecs_a);
23
24    Ok((vals_a, vecs))
25}
26
27/// Solve full eigenvalue problem, sort by `order` and truncate to `size`
28fn sorted_eig<A: NdFloat>(
29    a: Array2<A>,
30    b: Option<Array2<A>>,
31    size: usize,
32    order: Order,
33) -> Result<(Array1<A>, Array2<A>)> {
34    let res = match b {
35        Some(b) => generalized_eig(a, b)?,
36        _ => a.eigh_into()?,
37    };
38
39    // sort and ensure that signs are deterministic
40    let (vals, vecs) = res.sort_eig(order);
41    let s = vecs.row(0).mapv(|x| x.signum());
42    let vecs = vecs * s;
43    Ok((vals.slice_move(s![..size]), vecs.slice_move(s![.., ..size])))
44}
45
46/// Masks a matrix with the given `matrix`
47fn ndarray_mask<A: NdFloat>(matrix: ArrayView2<A>, mask: &[bool]) -> Array2<A> {
48    assert_eq!(mask.len(), matrix.ncols());
49
50    let indices = mask
51        .iter()
52        .enumerate()
53        .filter(|(_, b)| **b)
54        .map(|(a, _)| a)
55        .collect::<Vec<usize>>();
56
57    matrix.select(Axis(1), &indices)
58}
59
60/// Applies constraints ensuring that a matrix is orthogonal to it
61///
62/// This functions takes a matrix `v` and constraint-matrix `y` and orthogonalize `v` to `y`.
63fn apply_constraints<A: NdFloat>(
64    mut v: ArrayViewMut<A, Ix2>,
65    cholesky_yy: &Array2<A>,
66    y: ArrayView2<A>,
67) {
68    let gram_yv = y.t().dot(&v);
69
70    let u = cholesky_yy
71        .solve_triangular_into(gram_yv, UPLO::Lower)
72        .unwrap();
73
74    // performs `v = -1 y . u + 1 v`, therefore `v -= y.u`
75    ndarray::linalg::general_mat_mul(-A::one(), &y, &u, A::one(), &mut v);
76}
77
78/// Orthonormalize `V` with Cholesky factorization
79///
80/// This also returns the matrix `R` of the `QR` problem
81fn orthonormalize<T: NdFloat>(v: Array2<T>) -> Result<(Array2<T>, Array2<T>)> {
82    let gram_vv = v.t().dot(&v);
83    let gram_vv_fac = gram_vv.cholesky_into()?;
84
85    //assert_abs_diff_eq!(
86    //    &gram_vv,
87    //    &gram_vv_fac.dot(&gram_vv_fac.t()),
88    //    epsilon=NumCast::from(1e-5).unwrap(),
89    //);
90
91    let v_t = v.reversed_axes();
92    let u = gram_vv_fac
93        .solve_triangular_into(v_t, UPLO::Lower)?
94        .reversed_axes();
95
96    Ok((u, gram_vv_fac))
97}
98
99/// Eigenvalue solver for large symmetric positive definite (SPD) eigenproblems
100///
101/// # Arguments
102/// * `a` - An operator defining the problem, usually a sparse (sometimes also dense) matrix
103///   multiplication. Also called the "stiffness matrix".
104/// * `x` - Initial approximation of the k eigenvectors. If `a` has shape=(n,n), then `x` should
105///   have shape=(n,k).
106/// * `m` - Preconditioner to `a`, by default the identity matrix. Should approximate the inverse
107///   of `a`.
108/// * `y` - Constraints of (n,size_y), iterations are performed in the orthogonal complement of the
109///   column-space of `y`. It must be full rank.
110/// * `tol` - The tolerance values defines at which point the solver stops the optimization. The approximation
111///   of a eigenvalue stops when then l2-norm of the residual is below this threshold.
112/// * `maxiter` - The maximal number of iterations
113/// * `order` - Whether to solve for the largest or lowest eigenvalues
114///
115/// The function returns an `LobpcgResult` with the eigenvalue/eigenvector and achieved residual norm
116/// for it. All iterations are tracked and the optimal solution returned. In case of an error a
117/// special variant `LobpcgResult::NotConverged` additionally carries the error. This can happen when
118/// the precision of the matrix is too low (switch then from `f32` to `f64` for example).
119pub fn lobpcg<A: NdFloat + Sum, F: Fn(ArrayView2<A>) -> Array2<A>, G: Fn(ArrayViewMut2<A>)>(
120    a: F,
121    mut x: Array2<A>,
122    m: G,
123    y: Option<ArrayView2<A>>,
124    tol: f32,
125    maxiter: usize,
126    order: Order,
127) -> LobpcgResult<A> {
128    // the initital approximation should be maximal square
129    // n is the dimensionality of the problem
130    let (n, size_x) = (x.nrows(), x.ncols());
131    if size_x > n {
132        return Err((
133            LinalgError::NotThin {
134                rows: size_x,
135                cols: n,
136            },
137            None,
138        ));
139    }
140
141    /*let size_y = match y {
142        Some(ref y) => y.ncols(),
143        _ => 0,
144    };
145
146    if (n - size_y) < 5 * size_x {
147        panic!("Please use a different approach, the LOBPCG method only supports the calculation of a couple of eigenvectors!");
148    }*/
149
150    // cap the number of iteration
151    let mut iter = usize::min(n * 10, maxiter);
152    let tol = NumCast::from(tol).unwrap();
153
154    // calculate cholesky factorization of YY' and apply constraints to initial guess
155    let cholesky_yy = y.as_ref().map(|y| {
156        let cholesky_yy = y.t().dot(y).cholesky_into().unwrap();
157        apply_constraints(x.view_mut(), &cholesky_yy, y.view());
158        cholesky_yy
159    });
160
161    // orthonormalize the initial guess
162    let (x, _) = orthonormalize(x).map_err(|err| (err, None))?;
163
164    // calculate AX and XAX for Rayleigh quotient
165    let ax = a(x.view());
166    let xax = x.t().dot(&ax);
167
168    // perform eigenvalue decomposition of XAX
169    let (mut lambda, eig_block) =
170        sorted_eig(xax, None, size_x, order).map_err(|err| (err, None))?;
171
172    // initiate approximation of the eigenvector
173    let mut x = x.dot(&eig_block);
174    let mut ax = ax.dot(&eig_block);
175
176    // track residual below threshold
177    let mut activemask = vec![true; size_x];
178
179    // track residuals and best result
180    let mut residual_norms_history = Vec::new();
181    let mut best_result = None;
182
183    let mut previous_block_size = size_x;
184
185    let mut ident: Array2<A> = Array2::eye(size_x);
186    let ident0: Array2<A> = Array2::eye(size_x);
187    //let two: A = NumCast::from(2.0).unwrap();
188    let two = A::from(2.0).unwrap();
189
190    let mut previous_p_ap: Option<(Array2<A>, Array2<A>)> = None;
191    let mut explicit_gram_flag = true;
192
193    let final_norm = loop {
194        // calculate residual
195        let lambda_diag = Array2::from_diag(&lambda);
196        let lambda_x = x.dot(&lambda_diag);
197
198        // calculate residual AX - lambdaX
199        let r = &ax - &lambda_x;
200
201        // calculate L2 norm of error for every eigenvalue
202        let residual_norms = r
203            .columns()
204            .into_iter()
205            .map(|x| x.norm_l2())
206            .collect::<Vec<A>>();
207        residual_norms_history.push(residual_norms.clone());
208
209        // compare best result and update if we improved
210        let sum_rnorm = residual_norms.iter().cloned().sum();
211        if best_result
212            .as_ref()
213            .map(|x: &(_, _, Vec<A>)| x.2.iter().cloned().sum::<A>() > sum_rnorm)
214            .unwrap_or(true)
215        {
216            best_result = Some((lambda.clone(), x.clone(), residual_norms.clone()));
217        }
218
219        // disable eigenvalues which are below the tolerance threshold
220        activemask = residual_norms
221            .iter()
222            .zip(activemask.iter())
223            .map(|(x, a)| *x > tol && *a)
224            .collect();
225
226        // resize identity block if necessary
227        let current_block_size = activemask.iter().filter(|x| **x).count();
228        if current_block_size != previous_block_size {
229            previous_block_size = current_block_size;
230            ident = Array2::eye(current_block_size);
231        }
232
233        // if we are below the threshold for all eigenvalue or exceeded the number of iteration,
234        // abort
235        if current_block_size == 0 || iter == 0 {
236            break Ok(residual_norms);
237        }
238
239        // select active eigenvalues, apply pre-conditioner, orthogonalize to Y and orthonormalize
240        let mut active_block_r = ndarray_mask(r.view(), &activemask);
241        // apply preconditioner
242        m(active_block_r.view_mut());
243        // apply constraints to the preconditioned residuals
244        if let (Some(ref y), Some(ref cholesky_yy)) = (&y, &cholesky_yy) {
245            apply_constraints(active_block_r.view_mut(), cholesky_yy, y.view());
246        }
247        // orthogonalize the preconditioned residual to x
248        // performs `v = -1 y . u + 1 v`, therefore `v -= y.u`
249        ndarray::linalg::general_mat_mul(
250            -A::one(),
251            &x,
252            &x.t().dot(&active_block_r),
253            A::one(),
254            &mut active_block_r,
255        );
256
257        let (r, _) = match orthonormalize(active_block_r) {
258            Ok(x) => x,
259            Err(err) => break Err(err),
260        };
261
262        let ar = a(r.view());
263
264        // check whether `A` is of type `f32` or `f64`
265        let max_rnorm_float = if A::epsilon() > NumCast::from(1e-8).unwrap() {
266            NumCast::from(1.0).unwrap()
267        } else {
268            NumCast::from(1.0e-8).unwrap()
269        };
270
271        // if we are once below the max_rnorm, enable explicit gram flag
272        let max_norm = residual_norms.into_iter().fold(A::neg_infinity(), A::max);
273        explicit_gram_flag = max_norm <= max_rnorm_float || explicit_gram_flag;
274
275        // perform the Rayleigh Ritz procedure
276        let xar = x.t().dot(&ar);
277        let mut rar = r.t().dot(&ar);
278
279        // for small residuals calculate covariance matrices explicitely, otherwise approximate
280        // them such that X is orthogonal and uncorrelated to the residual R and use eigenvalues of
281        // previous decomposition
282        let (xax, xx, rr, xr) = if explicit_gram_flag {
283            rar = (&rar + &rar.t()) / two;
284            let xax = x.t().dot(&ax);
285
286            (
287                (&xax + &xax.t()) / two,
288                x.t().dot(&x),
289                r.t().dot(&r),
290                x.t().dot(&r),
291            )
292        } else {
293            (
294                lambda_diag,
295                ident0.clone(),
296                ident.clone(),
297                Array2::zeros((size_x, current_block_size)),
298            )
299        };
300
301        // mask and orthonormalize P and AP
302        let mut p_ap = previous_p_ap
303            .as_ref()
304            .and_then(|(p, ap)| {
305                let active_p = ndarray_mask(p.view(), &activemask);
306                let active_ap = ndarray_mask(ap.view(), &activemask);
307
308                orthonormalize(active_p).map(|x| (active_ap, x)).ok()
309            })
310            .and_then(|(active_ap, (active_p, p_r))| {
311                // orthonormalize AP with R^{-1} of A
312                let active_ap = active_ap.reversed_axes();
313                p_r.solve_triangular_into(active_ap, UPLO::Lower)
314                    .map(|active_ap| (active_p, active_ap.reversed_axes()))
315                    .ok()
316            });
317
318        // compute symmetric gram matrices and calculate solution of eigenproblem
319        //
320        // first try to compute the eigenvalue decomposition of the span{R, X, P},
321        // if this fails (or the algorithm was restarted), then just use span{R, X}
322        let result = p_ap
323            .as_ref()
324            .ok_or(LinalgError::NonInvertible)
325            .and_then(|(active_p, active_ap)| {
326                let xap = x.t().dot(active_ap);
327                let rap = r.t().dot(active_ap);
328                let pap = active_p.t().dot(active_ap);
329                let xp = x.t().dot(active_p);
330                let rp = r.t().dot(active_p);
331                let (pap, pp) = if explicit_gram_flag {
332                    ((&pap + &pap.t()) / two, active_p.t().dot(active_p))
333                } else {
334                    (pap, ident.clone())
335                };
336
337                sorted_eig(
338                    concatenate![
339                        Axis(0),
340                        concatenate![Axis(1), xax, xar, xap],
341                        concatenate![Axis(1), xar.t(), rar, rap],
342                        concatenate![Axis(1), xap.t(), rap.t(), pap]
343                    ],
344                    Some(concatenate![
345                        Axis(0),
346                        concatenate![Axis(1), xx, xr, xp],
347                        concatenate![Axis(1), xr.t(), rr, rp],
348                        concatenate![Axis(1), xp.t(), rp.t(), pp]
349                    ]),
350                    size_x,
351                    order,
352                )
353            })
354            .or_else(|_| {
355                p_ap = None;
356
357                sorted_eig(
358                    concatenate![
359                        Axis(0),
360                        concatenate![Axis(1), xax, xar],
361                        concatenate![Axis(1), xar.t(), rar]
362                    ],
363                    Some(concatenate![
364                        Axis(0),
365                        concatenate![Axis(1), xx, xr],
366                        concatenate![Axis(1), xr.t(), rr]
367                    ]),
368                    size_x,
369                    order,
370                )
371            });
372
373        // update eigenvalues and eigenvectors (lambda is also used in the next iteration)
374        let eig_vecs;
375        match result {
376            Ok((x, y)) => {
377                lambda = x;
378                eig_vecs = y;
379            }
380            Err(x) => break Err(x),
381        }
382
383        // approximate eigenvector X and conjugate vectors P with solution of eigenproblem
384        let (p, ap, tau) = if let Some((active_p, active_ap)) = p_ap {
385            // tau are eigenvalues to basis of X
386            let tau = eig_vecs.slice(s![..size_x, ..]);
387            // alpha are eigenvalues to basis of R
388            let alpha = eig_vecs.slice(s![size_x..size_x + current_block_size, ..]);
389            // gamma are eigenvalues to basis of P
390            let gamma = eig_vecs.slice(s![size_x + current_block_size.., ..]);
391
392            // update AP and P in span{R, P} as linear combination
393            let updated_p = r.dot(&alpha) + active_p.dot(&gamma);
394            let updated_ap = ar.dot(&alpha) + active_ap.dot(&gamma);
395
396            (updated_p, updated_ap, tau)
397        } else {
398            // tau are eigenvalues to basis of X
399            let tau = eig_vecs.slice(s![..size_x, ..]);
400            // alpha are eigenvalues to basis of R
401            let alpha = eig_vecs.slice(s![size_x.., ..]);
402
403            // update AP and P as linear combination of the residual matrix R
404            let updated_p = r.dot(&alpha);
405            let updated_ap = ar.dot(&alpha);
406
407            (updated_p, updated_ap, tau)
408        };
409
410        // update approximation of X as linear combinations of span{X, P, R}
411        x = x.dot(&tau) + &p;
412        ax = ax.dot(&tau) + &ap;
413
414        previous_p_ap = Some((p, ap));
415
416        iter -= 1;
417    };
418
419    // retrieve best result and convert norm into `A`
420    let (vals, vecs, rnorm) = best_result.unwrap();
421    let res = Lobpcg {
422        eigvals: vals,
423        eigvecs: vecs,
424        rnorm,
425    };
426
427    match final_norm {
428        Ok(_) => Ok(res),
429        Err(err) => Err((err, Some(res))),
430    }
431}
432
433#[cfg(test)]
434mod tests {
435    use super::ndarray_mask;
436    use super::orthonormalize;
437    use super::sorted_eig;
438    use super::Order;
439    use super::{lobpcg, Lobpcg};
440    use crate::qr::*;
441    use approx::assert_abs_diff_eq;
442    use ndarray::prelude::*;
443    use rand::distributions::{Distribution, Standard};
444    use rand::SeedableRng;
445    use rand_xoshiro::Xoshiro256Plus;
446
447    /// Generate random array
448    fn random<A>(sh: (usize, usize)) -> Array2<A>
449    where
450        A: NdFloat,
451        Standard: Distribution<A>,
452    {
453        let rng = Xoshiro256Plus::seed_from_u64(3);
454        crate::lobpcg::random(sh, rng)
455    }
456
457    /// Test the `sorted_eigen` function
458    #[test]
459    fn test_sorted_eigen() {
460        let matrix: Array2<f64> = random((10, 10)) * 10.0;
461        let matrix = matrix.t().dot(&matrix);
462
463        // return all eigenvectors with largest first
464        let (vals, vecs) = sorted_eig(matrix.clone(), None, 10, Order::Largest).unwrap();
465
466        // calculate V * A * V' and compare to original matrix
467        let diag = Array2::from_diag(&vals);
468        let rec = (vecs.dot(&diag)).dot(&vecs.t());
469
470        assert_abs_diff_eq!(&matrix, &rec, epsilon = 1e-5);
471    }
472
473    /// Test the masking function
474    #[test]
475    fn test_masking() {
476        let matrix: Array2<f64> = random((10, 5)) * 10.0;
477        let masked_matrix = ndarray_mask(matrix.view(), &[true, true, false, true, false]);
478        assert_abs_diff_eq!(
479            &masked_matrix.slice(s![.., 2]),
480            &matrix.slice(s![.., 3]),
481            epsilon = 1e-12,
482        );
483    }
484
485    /// Test orthonormalization of a random matrix
486    #[test]
487    fn test_orthonormalize() {
488        let matrix: Array2<f64> = random((10, 10)) * 10.0;
489
490        let (n, l) = orthonormalize(matrix.clone()).unwrap();
491
492        // check for orthogonality
493        let identity = n.dot(&n.t());
494        assert_abs_diff_eq!(&identity, &Array2::eye(10), epsilon = 1e-2);
495
496        // compare returned factorization with QR decomposition
497        let qr = matrix.qr().unwrap();
498        assert_abs_diff_eq!(
499            &qr.into_r().mapv(|x| x.abs()),
500            &l.t().mapv(|x| x.abs()),
501            epsilon = 1e-2
502        );
503    }
504
505    #[test]
506    fn test_generalized_eigenvalue() {
507        let matrix: Array2<f64> = random((10, 10)) * 1.;
508        let matrix = matrix.t().dot(&matrix);
509        let identity = Array2::eye(10);
510        let matrix_inv = matrix.qr().unwrap().inverse().unwrap();
511
512        // check that for the same matrix all eigenvalues are one
513        let (vals, _) =
514            sorted_eig(matrix.clone(), Some(matrix.clone()), 10, Order::Largest).unwrap();
515
516        assert_abs_diff_eq!(vals, Array1::from_elem(10, 1.0), epsilon = 1e-4);
517
518        let (vals1, _) = sorted_eig(matrix, Some(identity.clone()), 10, Order::Largest).unwrap();
519        let (vals2, _) = sorted_eig(identity, Some(matrix_inv), 10, Order::Largest).unwrap();
520
521        assert_abs_diff_eq!(vals1, vals2, epsilon = 1e-5);
522        //assert_abs_diff_eq!(vecs1, vecs2, epsilon=1e-5);
523    }
524
525    fn assert_symmetric(a: &Array2<f64>) {
526        assert_abs_diff_eq!(a.view(), &a.t(), epsilon = 1e-5);
527    }
528
529    fn check_eigenvalues(a: &Array2<f64>, order: Order, num: usize, ground_truth_eigvals: &[f64]) {
530        assert_symmetric(a);
531
532        let n = a.len_of(Axis(0));
533        let x: Array2<f64> = random((n, num));
534
535        let result = lobpcg(|y| a.dot(&y), x, |_| {}, None, 1e-6, n * 3, order);
536        match result {
537            Ok(Lobpcg { eigvals, rnorm, .. }) | Err((_, Some(Lobpcg { eigvals, rnorm, .. }))) => {
538                // check convergence
539                for (i, norm) in rnorm.into_iter().enumerate() {
540                    if norm > 1e-5 {
541                        println!("==== Assertion Failed ====");
542                        println!("The {}th eigenvalue estimation did not converge!", i);
543                        panic!("Too large deviation of residual norm: {} > 0.01", norm);
544                    }
545                }
546
547                // check correct order of eigenvalues
548                if ground_truth_eigvals.len() == num {
549                    assert_abs_diff_eq!(
550                        &Array1::from(ground_truth_eigvals.to_vec()),
551                        &eigvals,
552                        epsilon = num as f64 * 5e-5,
553                    )
554                }
555            }
556            Err((err, None)) => panic!("Did not converge: {:?}", err),
557        }
558    }
559
560    /// Test the eigensolver with a identity matrix problem and a random initial solution
561    #[test]
562    fn test_eigsolver_diag() {
563        let diag = arr1(&[
564            1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
565            20.,
566        ]);
567        let a = Array2::from_diag(&diag);
568
569        check_eigenvalues(&a, Order::Largest, 3, &[20., 19., 18.]);
570        check_eigenvalues(&a, Order::Smallest, 3, &[1., 2., 3.]);
571    }
572
573    /// Test the eigensolver with matrix of constructed eigenvalues
574    #[test]
575    fn test_eigsolver_constructed() {
576        let n = 50;
577        let tmp = random((n, n));
578        //let (v, _) = tmp.qr_square().unwrap();
579        let (v, _) = orthonormalize(tmp).unwrap();
580
581        // set eigenvalues in decreasing order
582        let t = Array2::from_diag(&Array1::linspace(n as f64, -(n as f64) + 2., n));
583        let a = v.dot(&t.dot(&v.t()));
584
585        // find five largest eigenvalues
586        check_eigenvalues(&a, Order::Largest, 5, &[50.0, 48.0, 46.0, 44.0, 42.0]);
587        check_eigenvalues(&a, Order::Smallest, 5, &[-48.0, -46.0, -44.0, -42.0, -40.0]);
588    }
589
590    #[test]
591    fn test_eigsolver_constrained() {
592        let diag = arr1(&[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]);
593        let a = Array2::from_diag(&diag);
594        let x: Array2<f64> = random((10, 1));
595        let y: Array2<f64> = arr2(&[
596            [1.0, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
597            [0., 1.0, 0., 0., 0., 0., 0., 0., 0., 0.],
598        ])
599        .reversed_axes();
600
601        let result = lobpcg(
602            |y| a.dot(&y),
603            x,
604            |_| {},
605            Some(y.view()),
606            1e-10,
607            50,
608            Order::Smallest,
609        );
610        match result {
611            Ok(Lobpcg {
612                eigvals,
613                eigvecs,
614                rnorm,
615            })
616            | Err((
617                _,
618                Some(Lobpcg {
619                    eigvals,
620                    eigvecs,
621                    rnorm,
622                }),
623            )) => {
624                // check convergence
625                for (i, norm) in rnorm.into_iter().enumerate() {
626                    if norm > 0.01 {
627                        println!("==== Assertion Failed ====");
628                        println!("The {}th eigenvalue estimation did not converge!", i);
629                        panic!("Too large deviation of residual norm: {} > 0.01", norm);
630                    }
631                }
632
633                // should be the third eigenvalue
634                assert_abs_diff_eq!(&eigvals, &Array1::from(vec![3.0]), epsilon = 1e-6);
635                assert_abs_diff_eq!(
636                    &eigvecs.column(0).mapv(|x| x.abs()),
637                    &arr1(&[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
638                    epsilon = 1e-5,
639                );
640            }
641            Err((err, None)) => panic!("Did not converge: {:?}", err),
642        }
643    }
644}