nabla_ml::nab_layers

Struct NabLayer

Source
pub struct NabLayer {
    pub weights: Option<NDArray>,
    pub biases: Option<NDArray>,
    pub weight_gradients: Option<NDArray>,
    pub bias_gradients: Option<NDArray>,
    pub node_index: Option<usize>,
    /* private fields */
}
Expand description

Represents a layer’s configuration and state

Fields§

§weights: Option<NDArray>

Layer weights (if any)

§biases: Option<NDArray>

Layer biases (if any)

§weight_gradients: Option<NDArray>

Weight gradients for optimization

§bias_gradients: Option<NDArray>

Bias gradients for optimization

§node_index: Option<usize>

Implementations§

Source§

impl NabLayer

Source

pub fn input(shape: Vec<usize>, name: Option<&str>) -> Self

Creates a new Input layer

§Arguments
  • shape - Shape of the input (excluding batch dimension)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

let input_layer = NabLayer::input(vec![784], Some("mnist_input"));
assert_eq!(input_layer.get_output_shape(), &[784]);
Source

pub fn dense( input_dim: usize, units: usize, activation: Option<&str>, name: Option<&str>, ) -> Self

Creates a new Dense (fully connected) layer

§Arguments
  • input_dim - Number of input features
  • units - Number of output units
  • activation - Optional activation function (“relu”, “sigmoid”, “tanh”, etc.)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

// Dense layer with ReLU activation
let dense = NabLayer::dense(784, 128, Some("relu"), Some("hidden_1"));
Source

pub fn activation( activation_type: &str, input_shape: Vec<usize>, name: Option<&str>, ) -> Self

Creates a new Activation layer

§Arguments
  • activation_type - Type of activation (“relu”, “sigmoid”, “tanh”, etc.)
  • input_shape - Shape of the input (excluding batch dimension)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

let relu = NabLayer::activation("relu", vec![128], Some("relu_1"));
assert_eq!(relu.get_output_shape(), &[128]);
Source

pub fn flatten(input_shape: Vec<usize>, name: Option<&str>) -> Self

Creates a new Flatten layer

Flattens the input while keeping the batch size. For example: (batch_size, height, width, channels) -> (batch_size, height * width * channels)

§Arguments
  • input_shape - Shape of the input (excluding batch dimension)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

// Flatten a 28x28x1 image to 784 features
let flatten = NabLayer::flatten(vec![28, 28, 1], Some("flatten_1"));
assert_eq!(flatten.get_output_shape(), &[784]);
Source

pub fn dropout(input_shape: Vec<usize>, rate: f64, name: Option<&str>) -> Self

Creates a new Dropout layer

Randomly sets input units to 0 with a probability of rate during training. During inference (training=false), the layer behaves like an identity function.

§Arguments
  • input_shape - Shape of the input (excluding batch dimension)
  • rate - Dropout rate between 0 and 1 (e.g., 0.5 means 50% of units are dropped)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

// Dropout with 50% rate
let dropout = NabLayer::dropout(vec![128], 0.5, Some("dropout_1"));
assert_eq!(dropout.get_output_shape(), &[128]);
Source

pub fn batch_norm( input_shape: Vec<usize>, epsilon: Option<f64>, momentum: Option<f64>, name: Option<&str>, ) -> Self

Creates a new BatchNormalization layer

Normalizes the activations of the previous layer for each batch. During training, uses batch statistics. During inference, uses running statistics.

§Arguments
  • input_shape - Shape of the input (excluding batch dimension)
  • epsilon - Small constant for numerical stability (default: 1e-5)
  • momentum - Momentum for running statistics (default: 0.99)
  • name - Optional name for the layer
§Example
use nabla_ml::nab_layers::NabLayer;

let bn = NabLayer::batch_norm(vec![128], None, None, Some("bn_1"));
assert_eq!(bn.get_output_shape(), &[128]);
Source

pub fn forward(&mut self, input: &NDArray, training: bool) -> NDArray

Forward pass through the layer

Source

pub fn backward(&mut self, gradient: &NDArray) -> NDArray

Backward pass for the layer

Source

pub fn get_output_shape(&self) -> &[usize]

Returns the output shape of the layer

Source

pub fn get_name(&self) -> &str

Returns the name of the layer

Source

pub fn is_trainable(&self) -> bool

Returns whether the layer is trainable

Source

pub fn compute_output_shape(&self, input_shape: &[usize]) -> Vec<usize>

Computes output shape for a given input shape

Source

pub fn set_node_index(&mut self, index: usize)

Source

pub fn set_inputs(&mut self, inputs: Vec<usize>)

Trait Implementations§

Source§

impl Clone for NabLayer

Source§

fn clone(&self) -> NabLayer

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V