[−][src]Struct nalgebra::linalg::SymmetricEigen
Eigendecomposition of a symmetric matrix.
Fields
eigenvectors: MatrixN<N, D>
The eigenvectors of the decomposed matrix.
eigenvalues: VectorN<N::RealField, D>
The unsorted eigenvalues of the decomposed matrix.
Methods
impl<N: ComplexField, D: Dim> SymmetricEigen<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
pub fn new(m: MatrixN<N, D>) -> Self where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
[src]
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
Computes the eigendecomposition of the given symmetric matrix.
Only the lower-triangular parts (including its diagonal) of m
is read.
pub fn try_new(
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self> where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
[src]
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self> where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
Computes the eigendecomposition of the given symmetric matrix with user-specified convergence parameters.
Only the lower-triangular part (including its diagonal) of m
is read.
Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn recompose(&self) -> MatrixN<N, D>
[src]
Rebuild the original matrix.
This is useful if some of the eigenvalues have been manually modified.
Trait Implementations
impl<N: Clone + ComplexField, D: Clone + Dim> Clone for SymmetricEigen<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
N::RealField: Clone,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
N::RealField: Clone,
fn clone(&self) -> SymmetricEigen<N, D>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: ComplexField, D: Dim> Copy for SymmetricEigen<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
MatrixN<N, D>: Copy,
VectorN<N::RealField, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
MatrixN<N, D>: Copy,
VectorN<N::RealField, D>: Copy,
impl<N: Debug + ComplexField, D: Debug + Dim> Debug for SymmetricEigen<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
N::RealField: Debug,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
N::RealField: Debug,
Auto Trait Implementations
impl<N, D> !Send for SymmetricEigen<N, D>
impl<N, D> !Sync for SymmetricEigen<N, D>
impl<N, D> !Unpin for SymmetricEigen<N, D>
impl<N, D> !UnwindSafe for SymmetricEigen<N, D>
impl<N, D> !RefUnwindSafe for SymmetricEigen<N, D>
Blanket Implementations
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,
fn vzip(self) -> V
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,