[][src]Struct nalgebra::linalg::SymmetricEigen

pub struct SymmetricEigen<N: ComplexField, D: Dim> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>, 
{ pub eigenvectors: MatrixN<N, D>, pub eigenvalues: VectorN<N::RealField, D>, }

Eigendecomposition of a symmetric matrix.

Fields

eigenvectors: MatrixN<N, D>

The eigenvectors of the decomposed matrix.

eigenvalues: VectorN<N::RealField, D>

The unsorted eigenvalues of the decomposed matrix.

Methods

impl<N: ComplexField, D: Dim> SymmetricEigen<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>, 
[src]

pub fn new(m: MatrixN<N, D>) -> Self where
    D: DimSub<U1>,
    DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>, 
[src]

Computes the eigendecomposition of the given symmetric matrix.

Only the lower-triangular parts (including its diagonal) of m is read.

pub fn try_new(
    m: MatrixN<N, D>,
    eps: N::RealField,
    max_niter: usize
) -> Option<Self> where
    D: DimSub<U1>,
    DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>, 
[src]

Computes the eigendecomposition of the given symmetric matrix with user-specified convergence parameters.

Only the lower-triangular part (including its diagonal) of m is read.

Arguments

  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.

pub fn recompose(&self) -> MatrixN<N, D>[src]

Rebuild the original matrix.

This is useful if some of the eigenvalues have been manually modified.

Trait Implementations

impl<N: Clone + ComplexField, D: Clone + Dim> Clone for SymmetricEigen<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
    N::RealField: Clone
[src]

impl<N: ComplexField, D: Dim> Copy for SymmetricEigen<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
    MatrixN<N, D>: Copy,
    VectorN<N::RealField, D>: Copy
[src]

impl<N: Debug + ComplexField, D: Debug + Dim> Debug for SymmetricEigen<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
    N::RealField: Debug
[src]

Auto Trait Implementations

impl<N, D> !Send for SymmetricEigen<N, D>

impl<N, D> !Sync for SymmetricEigen<N, D>

impl<N, D> !Unpin for SymmetricEigen<N, D>

impl<N, D> !UnwindSafe for SymmetricEigen<N, D>

impl<N, D> !RefUnwindSafe for SymmetricEigen<N, D>

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]