Trait nalgebra::ComplexField[][src]

pub trait ComplexField: 'static + SubsetOf<Self> + SupersetOf<f64> + FromPrimitive + Field<Element = Self, SimdBool = bool, Output = Self> + Neg + Clone + Send + Sync + Any + Debug + Display {
    type RealField: RealField;
Show 55 methods fn from_real(re: Self::RealField) -> Self;
fn real(self) -> Self::RealField;
fn imaginary(self) -> Self::RealField;
fn modulus(self) -> Self::RealField;
fn modulus_squared(self) -> Self::RealField;
fn argument(self) -> Self::RealField;
fn norm1(self) -> Self::RealField;
fn scale(self, factor: Self::RealField) -> Self;
fn unscale(self, factor: Self::RealField) -> Self;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn mul_add(self, a: Self, b: Self) -> Self;
fn abs(self) -> Self::RealField;
fn hypot(self, other: Self) -> Self::RealField;
fn recip(self) -> Self;
fn conjugate(self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn log(self, base: Self::RealField) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn ln(self) -> Self;
fn ln_1p(self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn exp_m1(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self::RealField) -> Self;
fn powc(self, n: Self) -> Self;
fn cbrt(self) -> Self;
fn is_finite(&self) -> bool;
fn try_sqrt(self) -> Option<Self>; fn to_polar(self) -> (Self::RealField, Self::RealField) { ... }
fn to_exp(self) -> (Self::RealField, Self) { ... }
fn signum(self) -> Self { ... }
fn sinh_cosh(self) -> (Self, Self) { ... }
fn sinc(self) -> Self { ... }
fn sinhc(self) -> Self { ... }
fn cosc(self) -> Self { ... }
fn coshc(self) -> Self { ... }
}
Expand description

Trait shared by all complex fields and its subfields (like real numbers).

Complex numbers are equipped with functions that are commonly used on complex numbers and reals. The results of those functions only have to be approximately equal to the actual theoretical values.

Associated Types

Required methods

Builds a pure-real complex number from the given value.

The real part of this complex number.

The imaginary part of this complex number.

The modulus of this complex number.

The squared modulus of this complex number.

The argument of this complex number.

The sum of the absolute value of this complex number’s real and imaginary part.

Multiplies this complex number by factor.

Divides this complex number by factor.

The absolute value of this complex number: self / self.signum().

This is equivalent to self.modulus().

Computes (self.conjugate() * self + other.conjugate() * other).sqrt()

Provided methods

The polar form of this complex number: (modulus, arg)

The exponential form of this complex number: (modulus, e^{i arg})

The exponential part of this complex number: self / self.modulus()

Cardinal sine

Cardinal cos

Implementations on Foreign Types

Implementors