Trait nalgebra::ComplexField [−][src]
pub trait ComplexField: 'static + SubsetOf<Self> + SupersetOf<f64> + FromPrimitive + Field<Element = Self, SimdBool = bool, Output = Self> + Neg + Clone + Send + Sync + Any + Debug + Display {
type RealField: RealField;
Show 55 methods
fn from_real(re: Self::RealField) -> Self;
fn real(self) -> Self::RealField;
fn imaginary(self) -> Self::RealField;
fn modulus(self) -> Self::RealField;
fn modulus_squared(self) -> Self::RealField;
fn argument(self) -> Self::RealField;
fn norm1(self) -> Self::RealField;
fn scale(self, factor: Self::RealField) -> Self;
fn unscale(self, factor: Self::RealField) -> Self;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn mul_add(self, a: Self, b: Self) -> Self;
fn abs(self) -> Self::RealField;
fn hypot(self, other: Self) -> Self::RealField;
fn recip(self) -> Self;
fn conjugate(self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn log(self, base: Self::RealField) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn ln(self) -> Self;
fn ln_1p(self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn exp_m1(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self::RealField) -> Self;
fn powc(self, n: Self) -> Self;
fn cbrt(self) -> Self;
fn is_finite(&self) -> bool;
fn try_sqrt(self) -> Option<Self>;
fn to_polar(self) -> (Self::RealField, Self::RealField) { ... }
fn to_exp(self) -> (Self::RealField, Self) { ... }
fn signum(self) -> Self { ... }
fn sinh_cosh(self) -> (Self, Self) { ... }
fn sinc(self) -> Self { ... }
fn sinhc(self) -> Self { ... }
fn cosc(self) -> Self { ... }
fn coshc(self) -> Self { ... }
}
Expand description
Trait shared by all complex fields and its subfields (like real numbers).
Complex numbers are equipped with functions that are commonly used on complex numbers and reals. The results of those functions only have to be approximately equal to the actual theoretical values.
Associated Types
Required methods
Builds a pure-real complex number from the given value.
fn modulus_squared(self) -> Self::RealField
fn modulus_squared(self) -> Self::RealField
The squared modulus of this complex number.
The sum of the absolute value of this complex number’s real and imaginary part.
The absolute value of this complex number: self / self.signum()
.
This is equivalent to self.modulus()
.
Computes (self.conjugate() * self + other.conjugate() * other).sqrt()
Provided methods
The polar form of this complex number: (modulus, arg)
The exponential form of this complex number: (modulus, e^{i arg})