Struct nalgebra::geometry::Translation
source · #[repr(C)]pub struct Translation<T, const D: usize> {
pub vector: SVector<T, D>,
}
Expand description
A translation.
Fields§
§vector: SVector<T, D>
The translation coordinates, i.e., how much is added to a point’s coordinates when it is translated.
Implementations§
source§impl<T: Scalar, const D: usize> Translation<T, D>
impl<T: Scalar, const D: usize> Translation<T, D>
sourcepub fn from_vector(vector: SVector<T, D>) -> Translation<T, D>
👎Deprecated: Use ::from
instead.
pub fn from_vector(vector: SVector<T, D>) -> Translation<T, D>
::from
instead.Creates a new translation from the given vector.
sourcepub fn inverse(&self) -> Translation<T, D>where
T: ClosedNeg,
pub fn inverse(&self) -> Translation<T, D>where T: ClosedNeg,
Inverts self
.
Example
let t = Translation3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.inverse(), Translation3::identity());
assert_eq!(t.inverse() * t, Translation3::identity());
// Work in all dimensions.
let t = Translation2::new(1.0, 2.0);
assert_eq!(t * t.inverse(), Translation2::identity());
assert_eq!(t.inverse() * t, Translation2::identity());
sourcepub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous( &self ) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where T: Zero + One, Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this translation into its equivalent homogeneous transformation matrix.
Example
let t = Translation3::new(10.0, 20.0, 30.0);
let expected = Matrix4::new(1.0, 0.0, 0.0, 10.0,
0.0, 1.0, 0.0, 20.0,
0.0, 0.0, 1.0, 30.0,
0.0, 0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
let t = Translation2::new(10.0, 20.0);
let expected = Matrix3::new(1.0, 0.0, 10.0,
0.0, 1.0, 20.0,
0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
sourcepub fn inverse_mut(&mut self)where
T: ClosedNeg,
pub fn inverse_mut(&mut self)where T: ClosedNeg,
Inverts self
in-place.
Example
let t = Translation3::new(1.0, 2.0, 3.0);
let mut inv_t = Translation3::new(1.0, 2.0, 3.0);
inv_t.inverse_mut();
assert_eq!(t * inv_t, Translation3::identity());
assert_eq!(inv_t * t, Translation3::identity());
// Work in all dimensions.
let t = Translation2::new(1.0, 2.0);
let mut inv_t = Translation2::new(1.0, 2.0);
inv_t.inverse_mut();
assert_eq!(t * inv_t, Translation2::identity());
assert_eq!(inv_t * t, Translation2::identity());
source§impl<T: Scalar + ClosedAdd, const D: usize> Translation<T, D>
impl<T: Scalar + ClosedAdd, const D: usize> Translation<T, D>
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point.
This is the same as the multiplication self * pt
.
Example
let t = Translation3::new(1.0, 2.0, 3.0);
let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(5.0, 7.0, 9.0));
source§impl<T: Scalar + ClosedSub, const D: usize> Translation<T, D>
impl<T: Scalar + ClosedSub, const D: usize> Translation<T, D>
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point by the inverse of this translation.
Example
let t = Translation3::new(1.0, 2.0, 3.0);
let transformed_point = t.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(3.0, 3.0, 3.0));
source§impl<T: Scalar, const D: usize> Translation<T, D>
impl<T: Scalar, const D: usize> Translation<T, D>
sourcepub fn identity() -> Translation<T, D>where
T: Zero,
pub fn identity() -> Translation<T, D>where T: Zero,
Creates a new identity translation.
Example
let t = Translation2::identity();
let p = Point2::new(1.0, 2.0);
assert_eq!(t * p, p);
// Works in all dimensions.
let t = Translation3::identity();
let p = Point3::new(1.0, 2.0, 3.0);
assert_eq!(t * p, p);
sourcepub fn cast<To: Scalar>(self) -> Translation<To, D>where
Translation<To, D>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Translation<To, D>where Translation<To, D>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let tra = Translation2::new(1.0f64, 2.0);
let tra2 = tra.cast::<f32>();
assert_eq!(tra2, Translation2::new(1.0f32, 2.0));
source§impl<T> Translation<T, 1>
impl<T> Translation<T, 1>
source§impl<T> Translation<T, 2>
impl<T> Translation<T, 2>
source§impl<T> Translation<T, 3>
impl<T> Translation<T, 3>
source§impl<T> Translation<T, 4>
impl<T> Translation<T, 4>
source§impl<T> Translation<T, 5>
impl<T> Translation<T, 5>
source§impl<T> Translation<T, 6>
impl<T> Translation<T, 6>
sourcepub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
pub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
Initializes this translation from its components.
Example
let t = Translation6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);
Trait Implementations§
source§impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Translation<T, D>> for Translation<T, D>where
T::Epsilon: Clone,
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Translation<T, D>> for Translation<T, D>where T::Epsilon: Clone,
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq
.source§impl<T: RealField + RealField, const D: usize> AbstractMagma<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AbstractMagma<Multiplicative> for Translation<T, D>
source§impl<T: RealField + RealField, const D: usize> AffineTransformation<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AffineTransformation<OPoint<T, Const<D>>> for Translation<T, D>
§type Rotation = Id<Multiplicative>
type Rotation = Id<Multiplicative>
Type of the first rotation to be applied.
§type NonUniformScaling = Id<Multiplicative>
type NonUniformScaling = Id<Multiplicative>
Type of the non-uniform scaling to be applied.
§type Translation = Translation<T, D>
type Translation = Translation<T, D>
The type of the pure translation part of this affine transformation.
source§fn decompose(&self) -> (Self, Id, Id, Id)
fn decompose(&self) -> (Self, Id, Id, Id)
Decomposes this affine transformation into a rotation followed by a non-uniform scaling,
followed by a rotation, followed by a translation.
source§fn append_translation(&self, t: &Self::Translation) -> Self
fn append_translation(&self, t: &Self::Translation) -> Self
Appends a translation to this similarity.
source§fn prepend_translation(&self, t: &Self::Translation) -> Self
fn prepend_translation(&self, t: &Self::Translation) -> Self
Prepends a translation to this similarity.
source§fn append_rotation(&self, _: &Self::Rotation) -> Self
fn append_rotation(&self, _: &Self::Rotation) -> Self
Appends a rotation to this similarity.
source§fn prepend_rotation(&self, _: &Self::Rotation) -> Self
fn prepend_rotation(&self, _: &Self::Rotation) -> Self
Prepends a rotation to this similarity.
source§fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
Appends a scaling factor to this similarity.
source§fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
Prepends a scaling factor to this similarity.
source§impl<T: Scalar + Arbitrary + Send, const D: usize> Arbitrary for Translation<T, D>where
Owned<T, Const<D>>: Send,
impl<T: Scalar + Arbitrary + Send, const D: usize> Arbitrary for Translation<T, D>where Owned<T, Const<D>>: Send,
source§impl<T, const D: usize> Archive for Translation<T, D>where
T: Archive,
SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>,
SVector<T, D>: Archive,
impl<T, const D: usize> Archive for Translation<T, D>where T: Archive, SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>, SVector<T, D>: Archive,
§type Archived = Translation<<T as Archive>::Archived, D>
type Archived = Translation<<T as Archive>::Archived, D>
The archived representation of this type. Read more
§type Resolver = TranslationResolver<T, D>
type Resolver = TranslationResolver<T, D>
The resolver for this type. It must contain all the additional information from serializing
needed to make the archived type from the normal type.
source§impl<__C: ?Sized, T, const D: usize> CheckBytes<__C> for Translation<T, D>where
SVector<T, D>: CheckBytes<__C>,
impl<__C: ?Sized, T, const D: usize> CheckBytes<__C> for Translation<T, D>where SVector<T, D>: CheckBytes<__C>,
source§unsafe fn check_bytes<'__bytecheck>(
value: *const Self,
context: &mut __C
) -> Result<&'__bytecheck Self, StructCheckError>
unsafe fn check_bytes<'__bytecheck>( value: *const Self, context: &mut __C ) -> Result<&'__bytecheck Self, StructCheckError>
Checks whether the given pointer points to a valid value within the
given context. Read more
source§impl<T: Clone, const D: usize> Clone for Translation<T, D>
impl<T: Clone, const D: usize> Clone for Translation<T, D>
source§fn clone(&self) -> Translation<T, D>
fn clone(&self) -> Translation<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<T: Scalar> Deref for Translation<T, 1>
impl<T: Scalar> Deref for Translation<T, 1>
source§impl<T: Scalar> Deref for Translation<T, 2>
impl<T: Scalar> Deref for Translation<T, 2>
source§impl<T: Scalar> Deref for Translation<T, 3>
impl<T: Scalar> Deref for Translation<T, 3>
source§impl<T: Scalar> Deref for Translation<T, 4>
impl<T: Scalar> Deref for Translation<T, 4>
source§impl<T: Scalar> Deref for Translation<T, 5>
impl<T: Scalar> Deref for Translation<T, 5>
source§impl<T: Scalar> Deref for Translation<T, 6>
impl<T: Scalar> Deref for Translation<T, 6>
source§impl<T: Scalar> DerefMut for Translation<T, 1>
impl<T: Scalar> DerefMut for Translation<T, 1>
source§impl<T: Scalar> DerefMut for Translation<T, 2>
impl<T: Scalar> DerefMut for Translation<T, 2>
source§impl<T: Scalar> DerefMut for Translation<T, 3>
impl<T: Scalar> DerefMut for Translation<T, 3>
source§impl<T: Scalar> DerefMut for Translation<T, 4>
impl<T: Scalar> DerefMut for Translation<T, 4>
source§impl<T: Scalar> DerefMut for Translation<T, 5>
impl<T: Scalar> DerefMut for Translation<T, 5>
source§impl<T: Scalar> DerefMut for Translation<T, 6>
impl<T: Scalar> DerefMut for Translation<T, 6>
source§impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Translation<T, D>where
Owned<T, Const<D>>: Deserialize<'a>,
impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Translation<T, D>where Owned<T, Const<D>>: Deserialize<'a>,
source§fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>where
Des: Deserializer<'a>,
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>where Des: Deserializer<'a>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<__D: Fallible + ?Sized, T, const D: usize> Deserialize<Translation<T, D>, __D> for Archived<Translation<T, D>>where
T: Archive,
SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>,
SVector<T, D>: Archive,
Archived<SVector<T, D>>: Deserialize<SVector<T, D>, __D>,
impl<__D: Fallible + ?Sized, T, const D: usize> Deserialize<Translation<T, D>, __D> for Archived<Translation<T, D>>where T: Archive, SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>, SVector<T, D>: Archive, Archived<SVector<T, D>>: Deserialize<SVector<T, D>, __D>,
source§fn deserialize(
&self,
deserializer: &mut __D
) -> Result<Translation<T, D>, __D::Error>
fn deserialize( &self, deserializer: &mut __D ) -> Result<Translation<T, D>, __D::Error>
Deserializes using the given deserializer
source§impl<T: Scalar, const D: usize> Distribution<Translation<T, D>> for Standardwhere
Standard: Distribution<T>,
impl<T: Scalar, const D: usize> Distribution<Translation<T, D>> for Standardwhere Standard: Distribution<T>,
source§fn sample<G: Rng + ?Sized>(&self, rng: &mut G) -> Translation<T, D>
fn sample<G: Rng + ?Sized>(&self, rng: &mut G) -> Translation<T, D>
Generate an arbitrary random variate for testing purposes.
source§impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
/
operator.source§impl<'a, 'b, T, const D: usize> Div<&'b Translation<T, D>> for &'a Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Div<&'b Translation<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
/
operator.source§impl<'b, T, const D: usize> Div<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Div<&'b Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField> Div<Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<T: SimdRealField> Div<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
/
operator.source§impl<'a, T, const D: usize> Div<Translation<T, D>> for &'a Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Div<Translation<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
/
operator.source§impl<T, const D: usize> Div<Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Div<Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<'b, T: SimdRealField> DivAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Translation3<T>)
fn div_assign(&mut self, rhs: &'b Translation3<T>)
Performs the
/=
operation. Read moresource§impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn div_assign(&mut self, rhs: &'b Translation<T, D>)
fn div_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<'b, T, const D: usize> DivAssign<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
impl<'b, T, const D: usize> DivAssign<&'b Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedSub,
source§fn div_assign(&mut self, right: &'b Translation<T, D>)
fn div_assign(&mut self, right: &'b Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Translation3<T>)
fn div_assign(&mut self, rhs: Translation3<T>)
Performs the
/=
operation. Read moresource§impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn div_assign(&mut self, rhs: Translation<T, D>)
fn div_assign(&mut self, rhs: Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<T, const D: usize> DivAssign<Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
impl<T, const D: usize> DivAssign<Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedSub,
source§fn div_assign(&mut self, right: Translation<T, D>)
fn div_assign(&mut self, right: Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 16]> for Translation<T, D>where
T: From<[<T as SimdValue>::Element; 16]> + Scalar + PrimitiveSimdValue,
T::Element: Scalar,
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 16]> for Translation<T, D>where T: From<[<T as SimdValue>::Element; 16]> + Scalar + PrimitiveSimdValue, T::Element: Scalar,
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 2]> for Translation<T, D>where
T: From<[<T as SimdValue>::Element; 2]> + Scalar + PrimitiveSimdValue,
T::Element: Scalar,
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 2]> for Translation<T, D>where T: From<[<T as SimdValue>::Element; 2]> + Scalar + PrimitiveSimdValue, T::Element: Scalar,
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 4]> for Translation<T, D>where
T: From<[<T as SimdValue>::Element; 4]> + Scalar + PrimitiveSimdValue,
T::Element: Scalar,
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 4]> for Translation<T, D>where T: From<[<T as SimdValue>::Element; 4]> + Scalar + PrimitiveSimdValue, T::Element: Scalar,
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 8]> for Translation<T, D>where
T: From<[<T as SimdValue>::Element; 8]> + Scalar + PrimitiveSimdValue,
T::Element: Scalar,
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 8]> for Translation<T, D>where T: From<[<T as SimdValue>::Element; 8]> + Scalar + PrimitiveSimdValue, T::Element: Scalar,
source§impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>, Const<1>>>::Buffer>> for Translation<T, D>
impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>, Const<1>>>::Buffer>> for Translation<T, D>
source§impl<T: Scalar, const D: usize> From<Translation<T, D>> for [T; D]
impl<T: Scalar, const D: usize> From<Translation<T, D>> for [T; D]
source§fn from(t: Translation<T, D>) -> Self
fn from(t: Translation<T, D>) -> Self
Converts to this type from the input type.
source§impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> From<Translation<T, D>> for Isometry<T, R, D>
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> From<Translation<T, D>> for Isometry<T, R, D>
source§fn from(tra: Translation<T, D>) -> Self
fn from(tra: Translation<T, D>) -> Self
Converts to this type from the input type.
source§impl<T: Scalar + Zero + One, const D: usize> From<Translation<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, Const<D>>,
impl<T: Scalar + Zero + One, const D: usize> From<Translation<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, Const<D>>,
source§fn from(t: Translation<T, D>) -> Self
fn from(t: Translation<T, D>) -> Self
Converts to this type from the input type.
source§impl<T: Scalar + Hash, const D: usize> Hash for Translation<T, D>where
Owned<T, Const<D>>: Hash,
impl<T: Scalar + Hash, const D: usize> Hash for Translation<T, D>where Owned<T, Const<D>>: Hash,
source§impl<T: RealField + RealField, const D: usize> Identity<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> Identity<Multiplicative> for Translation<T, D>
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Translation<T, D>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Translation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Translation<T, 2>> for UnitComplex<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
*
operator.source§impl<'a, 'b, T, const D: usize> Mul<&'b Translation<T, D>> for &'a Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b Translation<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for Rotation<T, D>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
*
operator.source§impl<'b, T, const D: usize> Mul<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Translation<T, 2>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Translation<T, 2>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Translation<T, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Translation<T, 2>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Translation<T, 3>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Translation<T, 3>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Translation<T, 3>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Translation<T, D>where T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField> Mul<Translation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Translation<T, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Translation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Translation<T, 2>> for UnitComplex<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Translation<T, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
*
operator.source§impl<'a, T, const D: usize> Mul<Translation<T, D>> for &'a Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<Translation<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§impl<T: SimdRealField, const D: usize> Mul<Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Translation<T, D>> for Rotation<T, D>where T::Element: SimdRealField,
source§impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
The resulting type after applying the
*
operator.source§impl<T, const D: usize> Mul<Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Translation<T, 2>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Translation<T, 2>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Translation<T, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Translation<T, 2>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Translation<T, 3>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Translation<T, 3>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Translation<T, 3>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> MulAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Translation3<T>)
fn mul_assign(&mut self, rhs: &'b Translation3<T>)
Performs the
*=
operation. Read moresource§impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<'b, T, const D: usize> MulAssign<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
impl<'b, T, const D: usize> MulAssign<&'b Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd,
source§fn mul_assign(&mut self, right: &'b Translation<T, D>)
fn mul_assign(&mut self, right: &'b Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Translation3<T>)
fn mul_assign(&mut self, rhs: Translation3<T>)
Performs the
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Isometry<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§fn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D>where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,
source§fn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T, const D: usize> MulAssign<Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
impl<T, const D: usize> MulAssign<Translation<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd,
source§fn mul_assign(&mut self, right: Translation<T, D>)
fn mul_assign(&mut self, right: Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T: Scalar + PartialEq, const D: usize> PartialEq<Translation<T, D>> for Translation<T, D>
impl<T: Scalar + PartialEq, const D: usize> PartialEq<Translation<T, D>> for Translation<T, D>
source§fn eq(&self, right: &Translation<T, D>) -> bool
fn eq(&self, right: &Translation<T, D>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.source§impl<T: RealField + RealField, const D: usize> ProjectiveTransformation<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> ProjectiveTransformation<OPoint<T, Const<D>>> for Translation<T, D>
source§fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Applies this group’s two_sided_inverse action on a point from the euclidean space.
source§impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Translation<T, D>> for Translation<T, D>where
T::Epsilon: Clone,
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Translation<T, D>> for Translation<T, D>where T::Epsilon: Clone,
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
The inverse of
RelativeEq::relative_eq
.source§impl<__S: Fallible + ?Sized, T, const D: usize> Serialize<__S> for Translation<T, D>where
T: Archive,
SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>,
SVector<T, D>: Serialize<__S>,
impl<__S: Fallible + ?Sized, T, const D: usize> Serialize<__S> for Translation<T, D>where T: Archive, SVector<T, D>: Archive<Archived = SVector<T::Archived, D>>, SVector<T, D>: Serialize<__S>,
source§impl<T: Scalar, const D: usize> Serialize for Translation<T, D>where
Owned<T, Const<D>>: Serialize,
impl<T: Scalar, const D: usize> Serialize for Translation<T, D>where Owned<T, Const<D>>: Serialize,
source§impl<T: Scalar + SimdValue, const D: usize> SimdValue for Translation<T, D>where
T::Element: Scalar,
impl<T: Scalar + SimdValue, const D: usize> SimdValue for Translation<T, D>where T::Element: Scalar,
§type Element = Translation<<T as SimdValue>::Element, D>
type Element = Translation<<T as SimdValue>::Element, D>
The type of the elements of each lane of this SIMD value.
§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
Type of the result of comparing two SIMD values like
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of
self
without bound-checking.source§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of
self
by val
without bound-checking.source§impl<T: RealField + RealField, const D: usize> Similarity<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> Similarity<OPoint<T, Const<D>>> for Translation<T, D>
§type Scaling = Id<Multiplicative>
type Scaling = Id<Multiplicative>
The type of the pure (uniform) scaling part of this similarity transformation.
source§fn translation(&self) -> Self
fn translation(&self) -> Self
The pure translational component of this similarity transformation.
source§fn translate_point(&self, pt: &E) -> E
fn translate_point(&self, pt: &E) -> E
Applies this transformation’s pure translational part to a point.
source§fn rotate_point(&self, pt: &E) -> E
fn rotate_point(&self, pt: &E) -> E
Applies this transformation’s pure rotational part to a point.
source§fn scale_point(&self, pt: &E) -> E
fn scale_point(&self, pt: &E) -> E
Applies this transformation’s pure scaling part to a point.
source§fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn rotate_vector( &self, pt: &<E as EuclideanSpace>::Coordinates ) -> <E as EuclideanSpace>::Coordinates
Applies this transformation’s pure rotational part to a vector.
source§fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn scale_vector( &self, pt: &<E as EuclideanSpace>::Coordinates ) -> <E as EuclideanSpace>::Coordinates
Applies this transformation’s pure scaling part to a vector.
source§fn inverse_translate_point(&self, pt: &E) -> E
fn inverse_translate_point(&self, pt: &E) -> E
Applies this transformation inverse’s pure translational part to a point.
source§fn inverse_rotate_point(&self, pt: &E) -> E
fn inverse_rotate_point(&self, pt: &E) -> E
Applies this transformation inverse’s pure rotational part to a point.
source§fn inverse_scale_point(&self, pt: &E) -> E
fn inverse_scale_point(&self, pt: &E) -> E
Applies this transformation inverse’s pure scaling part to a point.
source§fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_rotate_vector( &self, pt: &<E as EuclideanSpace>::Coordinates ) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse’s pure rotational part to a vector.
source§fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_scale_vector( &self, pt: &<E as EuclideanSpace>::Coordinates ) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse’s pure scaling part to a vector.
source§impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D>,
source§fn to_superset(&self) -> Isometry<T2, R, D>
fn to_superset(&self) -> Isometry<T2, R, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Translation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset( &self ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D>,
source§fn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Translation<T2, D>> for Translation<T1, D>where
T1: Scalar,
T2: Scalar + SupersetOf<T1>,
impl<T1, T2, const D: usize> SubsetOf<Translation<T2, D>> for Translation<T1, D>where T1: Scalar, T2: Scalar + SupersetOf<T1>,
source§fn to_superset(&self) -> Translation<T2, D>
fn to_superset(&self) -> Translation<T2, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Translation<T2, D>) -> bool
fn is_in_subset(rot: &Translation<T2, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Translation<T2, D>) -> Self
fn from_superset_unchecked(rot: &Translation<T2, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T: RealField + RealField, const D: usize> Transformation<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> Transformation<OPoint<T, Const<D>>> for Translation<T, D>
source§impl<T: RealField + RealField, const D: usize> Translation<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> Translation<OPoint<T, Const<D>>> for Translation<T, D>
Subgroups of the n-dimensional translation group T(n)
.
source§fn from_vector(v: SVector<T, D>) -> Option<Self>
fn from_vector(v: SVector<T, D>) -> Option<Self>
Attempts to convert a vector to this translation. Returns
None
if the translation
represented by v
is not part of the translation subgroup represented by Self
.source§impl<T: RealField + RealField, const D: usize> TwoSidedInverse<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> TwoSidedInverse<Multiplicative> for Translation<T, D>
source§fn two_sided_inverse(&self) -> Self
fn two_sided_inverse(&self) -> Self
source§fn two_sided_inverse_mut(&mut self)
fn two_sided_inverse_mut(&mut self)
source§impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Translation<T, D>> for Translation<T, D>where
T::Epsilon: Clone,
impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Translation<T, D>> for Translation<T, D>where T::Epsilon: Clone,
source§impl<T, const D: usize> Zeroable for Translation<T, D>where
T: Scalar + Zeroable,
SVector<T, D>: Zeroable,
impl<T, const D: usize> Zeroable for Translation<T, D>where T: Scalar + Zeroable, SVector<T, D>: Zeroable,
impl<T: RealField + RealField, const D: usize> AbstractGroup<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AbstractLoop<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AbstractMonoid<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AbstractQuasigroup<Multiplicative> for Translation<T, D>
impl<T: RealField + RealField, const D: usize> AbstractSemigroup<Multiplicative> for Translation<T, D>
impl<T: Copy, const D: usize> Copy for Translation<T, D>
impl<T: DeviceCopy, const D: usize> DeviceCopy for Translation<T, D>
impl<T: RealField + RealField, const D: usize> DirectIsometry<OPoint<T, Const<D>>> for Translation<T, D>
impl<T: Scalar + Eq, const D: usize> Eq for Translation<T, D>
impl<T: RealField + RealField, const D: usize> Isometry<OPoint<T, Const<D>>> for Translation<T, D>
impl<T, const D: usize> Pod for Translation<T, D>where T: Scalar + Pod, SVector<T, D>: Pod,
Auto Trait Implementations§
impl<T, const D: usize> RefUnwindSafe for Translation<T, D>where T: RefUnwindSafe,
impl<T, const D: usize> Send for Translation<T, D>where T: Send,
impl<T, const D: usize> Sync for Translation<T, D>where T: Sync,
impl<T, const D: usize> Unpin for Translation<T, D>where T: Unpin,
impl<T, const D: usize> UnwindSafe for Translation<T, D>where T: UnwindSafe,
Blanket Implementations§
source§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
The archived version of the pointer metadata for this type.
source§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata ) -> <T as Pointee>::Metadata
Converts some archived metadata to the pointer metadata for itself.
source§impl<T> ArchiveUnsized for Twhere
T: Archive,
impl<T> ArchiveUnsized for Twhere T: Archive,
§type Archived = <T as Archive>::Archived
type Archived = <T as Archive>::Archived
The archived counterpart of this type. Unlike
Archive
, it may be unsized. Read more§type MetadataResolver = ()
type MetadataResolver = ()
The resolver for the metadata of this type. Read more
source§unsafe fn resolve_metadata(
&self,
_: usize,
_: <T as ArchiveUnsized>::MetadataResolver,
_: *mut <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata
)
unsafe fn resolve_metadata( &self, _: usize, _: <T as ArchiveUnsized>::MetadataResolver, _: *mut <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata )
Creates the archived version of the metadata for this value at the given position and writes
it to the given output. Read more
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
impl<T> CheckedBitPattern for Twhere T: AnyBitPattern,
§type Bits = T
type Bits = T
Self
must have the same layout as the specified Bits
except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern
.source§fn is_valid_bit_pattern(_bits: &T) -> bool
fn is_valid_bit_pattern(_bits: &T) -> bool
If this function returns true, then it must be valid to reinterpret
bits
as &Self
.source§impl<F, W, T, D> Deserialize<With<T, W>, D> for Fwhere
W: DeserializeWith<F, T, D>,
D: Fallible + ?Sized,
F: ?Sized,
impl<F, W, T, D> Deserialize<With<T, W>, D> for Fwhere W: DeserializeWith<F, T, D>, D: Fallible + ?Sized, F: ?Sized,
source§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
source§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>
Gets the layout of the type.
§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<T, S> SerializeUnsized<S> for Twhere
T: Serialize<S>,
S: Serializer + ?Sized,
impl<T, S> SerializeUnsized<S> for Twhere T: Serialize<S>, S: Serializer + ?Sized,
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§unsafe fn to_subset_unchecked(&self) -> SS
unsafe fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.