Struct nalgebra::Matrix2
[−]
[src]
pub struct Matrix2<N> { pub m11: N, pub m21: N, pub m12: N, pub m22: N, }
Square matrix of dimension 2.
Fields
m11: N
m21: N
m12: N
m22: N
Methods
impl<N> Matrix2<N>
[src]
impl<N: Copy> Matrix2<N>
[src]
unsafe fn at_fast(&self, (i, j): (usize, usize)) -> N
unsafe fn set_fast(&mut self, (i, j): (usize, usize), val: N)
Trait Implementations
impl<N: Copy> Copy for Matrix2<N>
[src]
impl<N: Debug> Debug for Matrix2<N>
[src]
impl<N: Hash> Hash for Matrix2<N>
[src]
fn hash<__HN: Hasher>(&self, __arg_0: &mut __HN)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0
Feeds a slice of this type into the state provided.
impl<N: Clone> Clone for Matrix2<N>
[src]
fn clone(&self) -> Matrix2<N>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl<N: Decodable> Decodable for Matrix2<N>
[src]
impl<N: Encodable> Encodable for Matrix2<N>
[src]
impl<N: PartialEq> PartialEq for Matrix2<N>
[src]
fn eq(&self, __arg_0: &Matrix2<N>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &Matrix2<N>) -> bool
This method tests for !=
.
impl<N: Eq> Eq for Matrix2<N>
[src]
impl<N: Zero + One> Eye for Matrix2<N>
[src]
fn new_identity(dimension: usize) -> Matrix2<N>
Return the identity matrix of specified dimension
impl<N: Copy> Repeat<N> for Matrix2<N>
[src]
impl<N> AsRef<[[N; 2]; 2]> for Matrix2<N>
[src]
impl<N> AsMut<[[N; 2]; 2]> for Matrix2<N>
[src]
impl<'a, N> From<&'a [[N; 2]; 2]> for &'a Matrix2<N>
[src]
impl<'a, N> From<&'a mut [[N; 2]; 2]> for &'a mut Matrix2<N>
[src]
impl<'a, N: Clone> From<&'a [[N; 2]; 2]> for Matrix2<N>
[src]
impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<Matrix2<Nin>> for Matrix2<Nout>
[src]
impl<N: Add<N, Output=N>> Add<Matrix2<N>> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the +
operator
fn add(self, right: Matrix2<N>) -> Matrix2<N>
The method for the +
operator
impl<N: AddAssign<N>> AddAssign<Matrix2<N>> for Matrix2<N>
[src]
fn add_assign(&mut self, right: Matrix2<N>)
The method for the +=
operator
impl<N: Sub<N, Output=N>> Sub<Matrix2<N>> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the -
operator
fn sub(self, right: Matrix2<N>) -> Matrix2<N>
The method for the -
operator
impl<N: SubAssign<N>> SubAssign<Matrix2<N>> for Matrix2<N>
[src]
fn sub_assign(&mut self, right: Matrix2<N>)
The method for the -=
operator
impl<N: Copy + Add<N, Output=N>> Add<N> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the +
operator
fn add(self, right: N) -> Matrix2<N>
The method for the +
operator
impl<N: Copy + AddAssign<N>> AddAssign<N> for Matrix2<N>
[src]
fn add_assign(&mut self, right: N)
The method for the +=
operator
impl<N: Copy + Sub<N, Output=N>> Sub<N> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the -
operator
fn sub(self, right: N) -> Matrix2<N>
The method for the -
operator
impl<N: Copy + SubAssign<N>> SubAssign<N> for Matrix2<N>
[src]
fn sub_assign(&mut self, right: N)
The method for the -=
operator
impl<N: Copy + Mul<N, Output=N>> Mul<N> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the *
operator
fn mul(self, right: N) -> Matrix2<N>
The method for the *
operator
impl<N: Copy + MulAssign<N>> MulAssign<N> for Matrix2<N>
[src]
fn mul_assign(&mut self, right: N)
The method for the *=
operator
impl<N: Copy + Div<N, Output=N>> Div<N> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the /
operator
fn div(self, right: N) -> Matrix2<N>
The method for the /
operator
impl<N: Copy + DivAssign<N>> DivAssign<N> for Matrix2<N>
[src]
fn div_assign(&mut self, right: N)
The method for the /=
operator
impl<N: Absolute<N>> Absolute<Matrix2<N>> for Matrix2<N>
[src]
fn abs(m: &Matrix2<N>) -> Matrix2<N>
Computes some absolute value of this object. Typically, this will make all component of a matrix or vector positive. Read more
impl<N: Zero> Zero for Matrix2<N>
[src]
fn zero() -> Matrix2<N>
Returns the additive identity element of Self
, 0
. Read more
fn is_zero(&self) -> bool
Returns true
if self
is equal to the additive identity.
impl<N: Copy + BaseNum> One for Matrix2<N>
[src]
impl<N> Iterable<N> for Matrix2<N>
[src]
impl<N> IterableMut<N> for Matrix2<N>
[src]
impl<N> Dimension for Matrix2<N>
[src]
impl<N> Shape<(usize, usize)> for Matrix2<N>
[src]
impl<N: Copy> Indexable<(usize, usize), N> for Matrix2<N>
[src]
fn swap(&mut self, (i1, j1): (usize, usize), (i2, j2): (usize, usize))
Swaps the i
-th element of self
with its j
-th element.
unsafe fn unsafe_at(&self, (i, j): (usize, usize)) -> N
Reads the i
-th element of self
. Read more
unsafe fn unsafe_set(&mut self, (i, j): (usize, usize), val: N)
Writes to the i
-th element of self
. Read more
impl<N> Index<(usize, usize)> for Matrix2<N>
[src]
type Output = N
The returned type after indexing
fn index(&self, (i, j): (usize, usize)) -> &N
The method for the indexing (Foo[Bar]
) operation
impl<N> IndexMut<(usize, usize)> for Matrix2<N>
[src]
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N
The method for the indexing (Foo[Bar]
) operation
impl<N: Copy> Transpose for Matrix2<N>
[src]
fn transpose(&self) -> Matrix2<N>
Computes the transpose of a matrix.
fn transpose_mut(&mut self)
In-place version of transposed
.
impl<N: ApproxEq<N>> ApproxEq<N> for Matrix2<N>
[src]
fn approx_epsilon(_: Option<Matrix2<N>>) -> N
Default epsilon for approximation.
fn approx_ulps(_: Option<Matrix2<N>>) -> u32
Default ULPs for approximation.
fn approx_eq_eps(&self, other: &Matrix2<N>, epsilon: &N) -> bool
Tests approximate equality using a custom epsilon.
fn approx_eq_ulps(&self, other: &Matrix2<N>, ulps: u32) -> bool
Tests approximate equality using units in the last place (ULPs)
fn approx_eq(&self, other: &Self) -> bool
Tests approximate equality.
impl<N: Copy + Zero> Row<Vector2<N>> for Matrix2<N>
[src]
fn nrows(&self) -> usize
The number of column of self
.
fn set_row(&mut self, row: usize, v: Vector2<N>)
Writes the i
-th row of self
.
fn row(&self, row: usize) -> Vector2<N>
Reads the i
-th row of self
.
impl<N: Copy + Zero> Column<Vector2<N>> for Matrix2<N>
[src]
fn ncols(&self) -> usize
The number of column of this matrix or vector.
fn set_column(&mut self, column: usize, v: Vector2<N>)
Writes the i
-th column of self
.
fn column(&self, column: usize) -> Vector2<N>
Reads the i
-th column of self
.
impl<N: Clone + Copy + Zero> ColumnSlice<DVector2<N>> for Matrix2<N>
[src]
fn column_slice(&self, cid: usize, rstart: usize, rend: usize) -> DVector2<N>
Returns a view to a slice of a column of a matrix.
impl<N: Clone + Copy + Zero> RowSlice<DVector2<N>> for Matrix2<N>
[src]
fn row_slice(&self, rid: usize, cstart: usize, cend: usize) -> DVector2<N>
Returns a view to a slice of a row of a matrix.
impl<N: Copy + Zero> Diagonal<Vector2<N>> for Matrix2<N>
[src]
fn from_diagonal(diagonal: &Vector2<N>) -> Matrix2<N>
Creates a new matrix with the given diagonal.
fn diagonal(&self) -> Vector2<N>
The diagonal of this matrix.
impl<N: BaseNum + Copy> ToHomogeneous<Matrix3<N>> for Matrix2<N>
[src]
fn to_homogeneous(&self) -> Matrix3<N>
Gets the homogeneous coordinates form of this object.
impl<N: BaseNum + Copy> FromHomogeneous<Matrix3<N>> for Matrix2<N>
[src]
fn from(m: &Matrix3<N>) -> Matrix2<N>
Builds an object from its homogeneous coordinate form. Read more
impl<N> EigenQR<N, Vector2<N>> for Matrix2<N> where N: BaseFloat + ApproxEq<N> + Clone
[src]
fn eigen_qr(&self, eps: &N, niter: usize) -> (Matrix2<N>, Vector2<N>)
Computes the eigenvectors and eigenvalues of this matrix.
impl<N: Rand> Rand for Matrix2<N>
[src]
fn rand<R: Rng>(rng: &mut R) -> Matrix2<N>
Generates a random instance of this type using the specified source of randomness. Read more
impl<N: BaseNum + Cast<f64> + Clone> Mean<Vector2<N>> for Matrix2<N>
[src]
impl<N: Display + BaseFloat> Display for Matrix2<N>
[src]
impl<N: BaseNum + Neg<Output=N> + ApproxEq<N>> Inverse for Matrix2<N>
[src]
fn inverse(&self) -> Option<Matrix2<N>>
Returns the inverse of m
.
fn inverse_mut(&mut self) -> bool
In-place version of inverse
.
impl<N: BaseNum> Determinant<N> for Matrix2<N>
[src]
fn determinant(&self) -> N
Returns the determinant of m
.
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> Mul<Matrix2<N>> for Matrix2<N>
[src]
type Output = Matrix2<N>
The resulting type after applying the *
operator
fn mul(self, right: Matrix2<N>) -> Matrix2<N>
The method for the *
operator
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> Mul<Vector2<N>> for Matrix2<N>
[src]
type Output = Vector2<N>
The resulting type after applying the *
operator
fn mul(self, right: Vector2<N>) -> Vector2<N>
The method for the *
operator
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> Mul<Point2<N>> for Matrix2<N>
[src]
type Output = Point2<N>
The resulting type after applying the *
operator
fn mul(self, right: Point2<N>) -> Point2<N>
The method for the *
operator
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> MulAssign<Matrix2<N>> for Matrix2<N>
[src]
fn mul_assign(&mut self, right: Matrix2<N>)
The method for the *=
operator