Trait ndarray_rand::rand_distr::num_traits::float::FloatCore
source · pub trait FloatCore:
Num
+ NumCast
+ Neg<Output = Self>
+ PartialOrd
+ Copy {
Show 31 methods
// Required methods
fn infinity() -> Self;
fn neg_infinity() -> Self;
fn nan() -> Self;
fn neg_zero() -> Self;
fn min_value() -> Self;
fn min_positive_value() -> Self;
fn epsilon() -> Self;
fn max_value() -> Self;
fn classify(self) -> FpCategory;
fn to_degrees(self) -> Self;
fn to_radians(self) -> Self;
fn integer_decode(self) -> (u64, i16, i8);
// Provided methods
fn is_nan(self) -> bool { ... }
fn is_infinite(self) -> bool { ... }
fn is_finite(self) -> bool { ... }
fn is_normal(self) -> bool { ... }
fn is_subnormal(self) -> bool { ... }
fn floor(self) -> Self { ... }
fn ceil(self) -> Self { ... }
fn round(self) -> Self { ... }
fn trunc(self) -> Self { ... }
fn fract(self) -> Self { ... }
fn abs(self) -> Self { ... }
fn signum(self) -> Self { ... }
fn is_sign_positive(self) -> bool { ... }
fn is_sign_negative(self) -> bool { ... }
fn min(self, other: Self) -> Self { ... }
fn max(self, other: Self) -> Self { ... }
fn clamp(self, min: Self, max: Self) -> Self { ... }
fn recip(self) -> Self { ... }
fn powi(self, exp: i32) -> Self { ... }
}
Expand description
Generic trait for floating point numbers that works with no_std
.
This trait implements a subset of the Float
trait.
Required Methods§
sourcefn infinity() -> Self
fn infinity() -> Self
Returns positive infinity.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::infinity() == x);
}
check(f32::INFINITY);
check(f64::INFINITY);
sourcefn neg_infinity() -> Self
fn neg_infinity() -> Self
Returns negative infinity.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::neg_infinity() == x);
}
check(f32::NEG_INFINITY);
check(f64::NEG_INFINITY);
sourcefn nan() -> Self
fn nan() -> Self
Returns NaN.
§Examples
use num_traits::float::FloatCore;
fn check<T: FloatCore>() {
let n = T::nan();
assert!(n != n);
}
check::<f32>();
check::<f64>();
sourcefn neg_zero() -> Self
fn neg_zero() -> Self
Returns -0.0
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(n: T) {
let z = T::neg_zero();
assert!(z.is_zero());
assert!(T::one() / z == n);
}
check(f32::NEG_INFINITY);
check(f64::NEG_INFINITY);
sourcefn min_value() -> Self
fn min_value() -> Self
Returns the smallest finite value that this type can represent.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::min_value() == x);
}
check(f32::MIN);
check(f64::MIN);
sourcefn min_positive_value() -> Self
fn min_positive_value() -> Self
Returns the smallest positive, normalized value that this type can represent.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::min_positive_value() == x);
}
check(f32::MIN_POSITIVE);
check(f64::MIN_POSITIVE);
sourcefn epsilon() -> Self
fn epsilon() -> Self
Returns epsilon, a small positive value.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::epsilon() == x);
}
check(f32::EPSILON);
check(f64::EPSILON);
sourcefn max_value() -> Self
fn max_value() -> Self
Returns the largest finite value that this type can represent.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T) {
assert!(T::max_value() == x);
}
check(f32::MAX);
check(f64::MAX);
sourcefn classify(self) -> FpCategory
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
use std::num::FpCategory;
fn check<T: FloatCore>(x: T, c: FpCategory) {
assert!(x.classify() == c);
}
check(f32::INFINITY, FpCategory::Infinite);
check(f32::MAX, FpCategory::Normal);
check(f64::NAN, FpCategory::Nan);
check(f64::MIN_POSITIVE, FpCategory::Normal);
check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
check(0.0f64, FpCategory::Zero);
sourcefn to_degrees(self) -> Self
fn to_degrees(self) -> Self
Converts to degrees, assuming the number is in radians.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(rad: T, deg: T) {
assert!(rad.to_degrees() == deg);
}
check(0.0f32, 0.0);
check(f32::consts::PI, 180.0);
check(f64::consts::FRAC_PI_4, 45.0);
check(f64::INFINITY, f64::INFINITY);
sourcefn to_radians(self) -> Self
fn to_radians(self) -> Self
Converts to radians, assuming the number is in degrees.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(deg: T, rad: T) {
assert!(deg.to_radians() == rad);
}
check(0.0f32, 0.0);
check(180.0, f32::consts::PI);
check(45.0, f64::consts::FRAC_PI_4);
check(f64::INFINITY, f64::INFINITY);
sourcefn integer_decode(self) -> (u64, i16, i8)
fn integer_decode(self) -> (u64, i16, i8)
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
let (mantissa, exponent, sign) = x.integer_decode();
assert_eq!(mantissa, m);
assert_eq!(exponent, e);
assert_eq!(sign, s);
}
check(2.0f32, 1 << 23, -22, 1);
check(-2.0f32, 1 << 23, -22, -1);
check(f32::INFINITY, 1 << 23, 105, 1);
check(f64::NEG_INFINITY, 1 << 52, 972, -1);
Provided Methods§
sourcefn is_nan(self) -> bool
fn is_nan(self) -> bool
Returns true
if the number is NaN.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_nan() == p);
}
check(f32::NAN, true);
check(f32::INFINITY, false);
check(f64::NAN, true);
check(0.0f64, false);
sourcefn is_infinite(self) -> bool
fn is_infinite(self) -> bool
Returns true
if the number is infinite.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_infinite() == p);
}
check(f32::INFINITY, true);
check(f32::NEG_INFINITY, true);
check(f32::NAN, false);
check(f64::INFINITY, true);
check(f64::NEG_INFINITY, true);
check(0.0f64, false);
sourcefn is_finite(self) -> bool
fn is_finite(self) -> bool
Returns true
if the number is neither infinite or NaN.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_finite() == p);
}
check(f32::INFINITY, false);
check(f32::MAX, true);
check(f64::NEG_INFINITY, false);
check(f64::MIN_POSITIVE, true);
check(f64::NAN, false);
sourcefn is_normal(self) -> bool
fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal or NaN.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_normal() == p);
}
check(f32::INFINITY, false);
check(f32::MAX, true);
check(f64::NEG_INFINITY, false);
check(f64::MIN_POSITIVE, true);
check(0.0f64, false);
sourcefn is_subnormal(self) -> bool
fn is_subnormal(self) -> bool
Returns true
if the number is subnormal.
use num_traits::float::FloatCore;
use std::f64;
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());
sourcefn floor(self) -> Self
fn floor(self) -> Self
Returns the largest integer less than or equal to a number.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.floor() == y);
}
check(f32::INFINITY, f32::INFINITY);
check(0.9f32, 0.0);
check(1.0f32, 1.0);
check(1.1f32, 1.0);
check(-0.0f64, 0.0);
check(-0.9f64, -1.0);
check(-1.0f64, -1.0);
check(-1.1f64, -2.0);
check(f64::MIN, f64::MIN);
sourcefn ceil(self) -> Self
fn ceil(self) -> Self
Returns the smallest integer greater than or equal to a number.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.ceil() == y);
}
check(f32::INFINITY, f32::INFINITY);
check(0.9f32, 1.0);
check(1.0f32, 1.0);
check(1.1f32, 2.0);
check(-0.0f64, 0.0);
check(-0.9f64, -0.0);
check(-1.0f64, -1.0);
check(-1.1f64, -1.0);
check(f64::MIN, f64::MIN);
sourcefn round(self) -> Self
fn round(self) -> Self
Returns the nearest integer to a number. Round half-way cases away from 0.0
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.round() == y);
}
check(f32::INFINITY, f32::INFINITY);
check(0.4f32, 0.0);
check(0.5f32, 1.0);
check(0.6f32, 1.0);
check(-0.4f64, 0.0);
check(-0.5f64, -1.0);
check(-0.6f64, -1.0);
check(f64::MIN, f64::MIN);
sourcefn trunc(self) -> Self
fn trunc(self) -> Self
Return the integer part of a number.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.trunc() == y);
}
check(f32::INFINITY, f32::INFINITY);
check(0.9f32, 0.0);
check(1.0f32, 1.0);
check(1.1f32, 1.0);
check(-0.0f64, 0.0);
check(-0.9f64, -0.0);
check(-1.0f64, -1.0);
check(-1.1f64, -1.0);
check(f64::MIN, f64::MIN);
sourcefn fract(self) -> Self
fn fract(self) -> Self
Returns the fractional part of a number.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.fract() == y);
}
check(f32::MAX, 0.0);
check(0.75f32, 0.75);
check(1.0f32, 0.0);
check(1.25f32, 0.25);
check(-0.0f64, 0.0);
check(-0.75f64, -0.75);
check(-1.0f64, 0.0);
check(-1.25f64, -0.25);
check(f64::MIN, 0.0);
sourcefn abs(self) -> Self
fn abs(self) -> Self
Computes the absolute value of self
. Returns FloatCore::nan()
if the
number is FloatCore::nan()
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.abs() == y);
}
check(f32::INFINITY, f32::INFINITY);
check(1.0f32, 1.0);
check(0.0f64, 0.0);
check(-0.0f64, 0.0);
check(-1.0f64, 1.0);
check(f64::MIN, f64::MAX);
sourcefn signum(self) -> Self
fn signum(self) -> Self
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orFloatCore::infinity()
-1.0
if the number is negative,-0.0
orFloatCore::neg_infinity()
FloatCore::nan()
if the number isFloatCore::nan()
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.signum() == y);
}
check(f32::INFINITY, 1.0);
check(3.0f32, 1.0);
check(0.0f32, 1.0);
check(-0.0f64, -1.0);
check(-3.0f64, -1.0);
check(f64::MIN, -1.0);
sourcefn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
Returns true
if self
is positive, including +0.0
and
FloatCore::infinity()
, and FloatCore::nan()
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_sign_positive() == p);
}
check(f32::INFINITY, true);
check(f32::MAX, true);
check(0.0f32, true);
check(-0.0f64, false);
check(f64::NEG_INFINITY, false);
check(f64::MIN_POSITIVE, true);
check(f64::NAN, true);
check(-f64::NAN, false);
sourcefn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
Returns true
if self
is negative, including -0.0
and
FloatCore::neg_infinity()
, and -FloatCore::nan()
.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, p: bool) {
assert!(x.is_sign_negative() == p);
}
check(f32::INFINITY, false);
check(f32::MAX, false);
check(0.0f32, false);
check(-0.0f64, true);
check(f64::NEG_INFINITY, true);
check(f64::MIN_POSITIVE, false);
check(f64::NAN, false);
check(-f64::NAN, true);
sourcefn min(self, other: Self) -> Self
fn min(self, other: Self) -> Self
Returns the minimum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T, min: T) {
assert!(x.min(y) == min);
}
check(1.0f32, 2.0, 1.0);
check(f32::NAN, 2.0, 2.0);
check(1.0f64, -2.0, -2.0);
check(1.0f64, f64::NAN, 1.0);
sourcefn max(self, other: Self) -> Self
fn max(self, other: Self) -> Self
Returns the maximum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T, max: T) {
assert!(x.max(y) == max);
}
check(1.0f32, 2.0, 2.0);
check(1.0f32, f32::NAN, 1.0);
check(-1.0f64, 2.0, 2.0);
check(-1.0f64, f64::NAN, -1.0);
sourcefn clamp(self, min: Self, max: Self) -> Self
fn clamp(self, min: Self, max: Self) -> Self
A value bounded by a minimum and a maximum
If input is less than min then this returns min. If input is greater than max then this returns max. Otherwise this returns input.
Panics in debug mode if !(min <= max)
.
§Examples
use num_traits::float::FloatCore;
fn check<T: FloatCore>(val: T, min: T, max: T, expected: T) {
assert!(val.clamp(min, max) == expected);
}
check(1.0f32, 0.0, 2.0, 1.0);
check(1.0f32, 2.0, 3.0, 2.0);
check(3.0f32, 0.0, 2.0, 2.0);
check(1.0f64, 0.0, 2.0, 1.0);
check(1.0f64, 2.0, 3.0, 2.0);
check(3.0f64, 0.0, 2.0, 2.0);
sourcefn recip(self) -> Self
fn recip(self) -> Self
Returns the reciprocal (multiplicative inverse) of the number.
§Examples
use num_traits::float::FloatCore;
use std::{f32, f64};
fn check<T: FloatCore>(x: T, y: T) {
assert!(x.recip() == y);
assert!(y.recip() == x);
}
check(f32::INFINITY, 0.0);
check(2.0f32, 0.5);
check(-0.25f64, -4.0);
check(-0.0f64, f64::NEG_INFINITY);
sourcefn powi(self, exp: i32) -> Self
fn powi(self, exp: i32) -> Self
Raise a number to an integer power.
Using this function is generally faster than using powf
§Examples
use num_traits::float::FloatCore;
fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
assert!(x.powi(exp) == powi);
}
check(9.0f32, 2, 81.0);
check(1.0f32, -2, 1.0);
check(10.0f64, 20, 1e20);
check(4.0f64, -2, 0.0625);
check(-1.0f64, std::i32::MIN, 1.0);