Struct ndarray_stats::histogram::strategies::FreedmanDiaconis
source · [−]pub struct FreedmanDiaconis<T> { /* private fields */ }
Expand description
Robust (resilient to outliers) strategy that takes into account data variability and data size.
Let n
be the number of observations.
bin_width
= 2 × IQR
× n
−1/3
The bin width is proportional to the interquartile range (IQR
) and inversely proportional to
cube root of n
. It can be too conservative for small datasets, but it is quite good for large
datasets.
The IQR
is very robust to outliers.
Notes
This strategy requires the data
- not being empty
- not being constant
- having positive
IQR
Implementations
sourceimpl<T> FreedmanDiaconis<T> where
T: Ord + Clone + FromPrimitive + NumOps + Zero,
impl<T> FreedmanDiaconis<T> where
T: Ord + Clone + FromPrimitive + NumOps + Zero,
Trait Implementations
sourceimpl<T> BinsBuildingStrategy for FreedmanDiaconis<T> where
T: Ord + Clone + FromPrimitive + NumOps + Zero,
impl<T> BinsBuildingStrategy for FreedmanDiaconis<T> where
T: Ord + Clone + FromPrimitive + NumOps + Zero,
Auto Trait Implementations
impl<T> RefUnwindSafe for FreedmanDiaconis<T> where
T: RefUnwindSafe,
impl<T> Send for FreedmanDiaconis<T> where
T: Send,
impl<T> Sync for FreedmanDiaconis<T> where
T: Sync,
impl<T> Unpin for FreedmanDiaconis<T> where
T: Unpin,
impl<T> UnwindSafe for FreedmanDiaconis<T> where
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more