Crate netlink_packet_core
source · [−]Expand description
netlink-packet-core
provides a generic netlink message
NetlinkMessage<T>
that is independant of the sub-protocol. Such
messages are not very useful by themselves, since they are just
used to carry protocol-dependant messages. That is what the T
represent: T
is the NetlinkMessage
’s protocol-dependant
message. This can be any type that implements
NetlinkSerializable
and NetlinkDeserializable
.
For instance, the netlink-packet-route
crate provides rtnetlink
messages via netlink_packet_route::RtnlMessage
, and
netlink-packet-audit
provides audit messages via
netlink_packet_audit::AuditMessage
.
By itself, the netlink-packet-core
crate is not very
useful. However, it is used in netlink-proto
to provide an
asynchronous implementation of the netlink protocol for any
sub-protocol. Thus, a crate that defines messages for a given
netlink sub-protocol could integrate with netlink-packet-core
and would get an asynchronous implementation for free. See the
second example below for such an integration, via the
NetlinkSerializable
and NetlinkDeserializable
traits.
Example: usage with netlink-packet-route
This example shows how to serialize and deserialize netlink packet
for the rtnetlink sub-protocol. It requires
netlink-packet-route
.
use netlink_packet_core::{NetlinkHeader, NetlinkMessage, NLM_F_DUMP, NLM_F_REQUEST};
use netlink_packet_route::{LinkMessage, RtnlMessage};
// Create the netlink message, that contains the rtnetlink
// message
let mut packet = NetlinkMessage {
header: NetlinkHeader {
sequence_number: 1,
flags: NLM_F_DUMP | NLM_F_REQUEST,
..Default::default()
},
payload: RtnlMessage::GetLink(LinkMessage::default()).into(),
};
// Before serializing the packet, it is important to call
// finalize() to ensure the header of the message is consistent
// with its payload. Otherwise, a panic may occur when calling
// serialize()
packet.finalize();
// Prepare a buffer to serialize the packet. Note that we never
// set explicitely `packet.header.length` above. This was done
// automatically when we called `finalize()`
let mut buf = vec![0; packet.header.length as usize];
// Serialize the packet
packet.serialize(&mut buf[..]);
// Deserialize the packet
let deserialized_packet =
NetlinkMessage::<RtnlMessage>::deserialize(&buf).expect("Failed to deserialize message");
// Normally, the deserialized packet should be exactly the same
// than the serialized one.
assert_eq!(deserialized_packet, packet);
println!("{:?}", packet);
Example: adding messages for new netlink sub-protocol
Let’s assume we have a netlink protocol called “ping pong” that defines two types of messages: “ping” messages, which payload can be any sequence of bytes, and “pong” message, which payload is also a sequence of bytes. The protocol works as follow: when an enpoint receives a “ping” message, it answers with a “pong”, with the payload of the “ping” it’s answering to.
“ping” messages have type 18 and “pong” have type “20”. Here is
what a “ping” message that would look like if its payload is [0, 1, 2, 3]
:
0 8 16 24 32
+----------------+----------------+----------------+----------------+
| packet length (including header) = 16 + 4 = 20 |
+----------------+----------------+----------------+----------------+
| message type = 18 (ping) | flags |
+----------------+----------------+----------------+----------------+
| sequence number |
+----------------+----------------+----------------+----------------+
| port number |
+----------------+----------------+----------------+----------------+
| 0 | 1 | 2 | 3 |
+----------------+----------------+----------------+----------------+
And the “pong” response would be:
0 8 16 24 32
+----------------+----------------+----------------+----------------+
| packet length (including header) = 16 + 4 = 20 |
+----------------+----------------+----------------+----------------+
| message type = 20 (pong) | flags |
+----------------+----------------+----------------+----------------+
| sequence number |
+----------------+----------------+----------------+----------------+
| port number |
+----------------+----------------+----------------+----------------+
| 0 | 1 | 2 | 3 |
+----------------+----------------+----------------+----------------+
Here is how we could implement the messages for such a protocol
and integrate this implementation with netlink-packet-core
:
use netlink_packet_core::{
NetlinkDeserializable, NetlinkHeader, NetlinkMessage, NetlinkPayload, NetlinkSerializable,
};
use std::error::Error;
use std::fmt;
// PingPongMessage represent the messages for the "ping-pong" netlink
// protocol. There are only two types of messages.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum PingPongMessage {
Ping(Vec<u8>),
Pong(Vec<u8>),
}
// The netlink header contains a "message type" field that identifies
// the message it carries. Some values are reserved, and we
// arbitrarily decided that "ping" type is 18 and "pong" type is 20.
pub const PING_MESSAGE: u16 = 18;
pub const PONG_MESSAGE: u16 = 20;
// A custom error type for when deserialization fails. This is
// required because `NetlinkDeserializable::Error` must implement
// `std::error::Error`, so a simple `String` won't cut it.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct DeserializeError(&'static str);
impl Error for DeserializeError {
fn description(&self) -> &str {
self.0
}
fn source(&self) -> Option<&(dyn Error + 'static)> {
None
}
}
impl fmt::Display for DeserializeError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
// NetlinkDeserializable implementation
impl NetlinkDeserializable for PingPongMessage {
type Error = DeserializeError;
fn deserialize(header: &NetlinkHeader, payload: &[u8]) -> Result<Self, Self::Error> {
match header.message_type {
PING_MESSAGE => Ok(PingPongMessage::Ping(payload.to_vec())),
PONG_MESSAGE => Ok(PingPongMessage::Pong(payload.to_vec())),
_ => Err(DeserializeError(
"invalid ping-pong message: invalid message type",
)),
}
}
}
// NetlinkSerializable implementation
impl NetlinkSerializable for PingPongMessage {
fn message_type(&self) -> u16 {
match self {
PingPongMessage::Ping(_) => PING_MESSAGE,
PingPongMessage::Pong(_) => PONG_MESSAGE,
}
}
fn buffer_len(&self) -> usize {
match self {
PingPongMessage::Ping(vec) | PingPongMessage::Pong(vec) => vec.len(),
}
}
fn serialize(&self, buffer: &mut [u8]) {
match self {
PingPongMessage::Ping(vec) | PingPongMessage::Pong(vec) => {
buffer.copy_from_slice(&vec[..])
}
}
}
}
// It can be convenient to be able to create a NetlinkMessage directly
// from a PingPongMessage. Since NetlinkMessage<T> already implements
// From<NetlinkPayload<T>>, we just need to implement
// From<NetlinkPayload<PingPongMessage>> for this to work.
impl From<PingPongMessage> for NetlinkPayload<PingPongMessage> {
fn from(message: PingPongMessage) -> Self {
NetlinkPayload::InnerMessage(message)
}
}
fn main() {
let ping_pong_message = PingPongMessage::Ping(vec![0, 1, 2, 3]);
let mut packet = NetlinkMessage::from(ping_pong_message);
// Before serializing the packet, it is very important to call
// finalize() to ensure the header of the message is consistent
// with its payload. Otherwise, a panic may occur when calling
// `serialize()`
packet.finalize();
// Prepare a buffer to serialize the packet. Note that we never
// set explicitely `packet.header.length` above. This was done
// automatically when we called `finalize()`
let mut buf = vec![0; packet.header.length as usize];
// Serialize the packet
packet.serialize(&mut buf[..]);
// Deserialize the packet
let deserialized_packet = NetlinkMessage::<PingPongMessage>::deserialize(&buf)
.expect("Failed to deserialize message");
// Normally, the deserialized packet should be exactly the same
// than the serialized one.
assert_eq!(deserialized_packet, packet);
// This should print:
// NetlinkMessage { header: NetlinkHeader { length: 20, message_type: 18, flags: 0, sequence_number: 0, port_number: 0 }, payload: InnerMessage(Ping([0, 1, 2, 3])) }
println!("{:?}", packet);
}
Re-exports
Modules
Structs
Enums
Constants
The message terminates a multipart message. Data lost
The message signals an error and the payload contains a nlmsgerr structure. This can be looked at as a NACK and typically it is from FEC to CPC.
The message is ignored.
Traits
A NetlinkDeserializable
type can be deserialized from a buffer