no_std_net

Struct Ipv4Addr

Source
pub struct Ipv4Addr { /* private fields */ }
Expand description

An IPv4 address.

IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.

See IpAddr for a type encompassing both IPv4 and IPv6 addresses.

§Textual representation

Ipv4Addr provides a FromStr implementation. The four octets are in decimal notation, divided by . (this is called “dot-decimal notation”). Notably, octal numbers and hexadecimal numbers are not allowed per IETF RFC 6943.

§Examples

use no_std_net::Ipv4Addr;

let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);

Implementations§

Source§

impl Ipv4Addr

Source

pub const LOCALHOST: Self = _

An IPv4 address with the address pointing to localhost: 127.0.0.1

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::LOCALHOST;
assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
Source

pub const UNSPECIFIED: Self = _

An IPv4 address representing an unspecified address: 0.0.0.0

This corresponds to the constant INADDR_ANY in other languages.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::UNSPECIFIED;
assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
Source

pub const BROADCAST: Self = _

An IPv4 address representing the broadcast address: 255.255.255.255

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::BROADCAST;
assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
Source

pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr

Creates a new IPv4 address from four eight-bit octets.

The result will represent the IP address a.b.c.d.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
Source

pub const fn octets(&self) -> [u8; 4]

Returns the four eight-bit integers that make up this address.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);
Source

pub const fn is_unspecified(&self) -> bool

Returns true for the special ‘unspecified’ address (0.0.0.0).

This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.

§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
Source

pub const fn is_loopback(&self) -> bool

Returns true if this is a loopback address (127.0.0.0/8).

This property is defined by IETF RFC 1122.

§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
Source

pub const fn is_private(&self) -> bool

Returns true if this is a private address.

The private address ranges are defined in IETF RFC 1918 and include:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16
§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);

Returns true if the address is link-local (169.254.0.0/16).

This property is defined by IETF RFC 3927.

§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
Source

pub const fn is_multicast(&self) -> bool

Returns true if this is a multicast address (224.0.0.0/4).

Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.

§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
Source

pub const fn is_broadcast(&self) -> bool

Returns true if this is a broadcast address (255.255.255.255).

A broadcast address has all octets set to 255 as defined in IETF RFC 919.

§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
Source

pub const fn is_documentation(&self) -> bool

Returns true if this address is in a range designated for documentation.

This is defined in IETF RFC 5737:

  • 192.0.2.0/24 (TEST-NET-1)
  • 198.51.100.0/24 (TEST-NET-2)
  • 203.0.113.0/24 (TEST-NET-3)
§Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
Source

pub const fn to_ipv6_compatible(&self) -> Ipv6Addr

Converts this address to an IPv4-compatible IPv6 address.

a.b.c.d becomes ::a.b.c.d

This isn’t typically the method you want; these addresses don’t typically function on modern systems. Use to_ipv6_mapped instead.

§Examples
use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(
    Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
    Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
);
Source

pub const fn to_ipv6_mapped(&self) -> Ipv6Addr

Converts this address to an IPv4-mapped IPv6 address.

a.b.c.d becomes ::ffff:a.b.c.d

§Examples
use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));

Trait Implementations§

Source§

impl Clone for Ipv4Addr

Source§

fn clone(&self) -> Ipv4Addr

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Ipv4Addr

Source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Display for Ipv4Addr

Source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<[u8; 4]> for Ipv4Addr

Source§

fn from(octets: [u8; 4]) -> Ipv4Addr

Creates an Ipv4Addr from a four element byte array.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
Source§

impl From<Ipv4Addr> for IpAddr

Source§

fn from(ipv4: Ipv4Addr) -> IpAddr

Copies this address to a new IpAddr::V4.

§Examples
use no_std_net::{IpAddr, Ipv4Addr};

let addr = Ipv4Addr::new(127, 0, 0, 1);

assert_eq!(
    IpAddr::V4(addr),
    IpAddr::from(addr)
)
Source§

impl From<Ipv4Addr> for u32

Source§

fn from(ip: Ipv4Addr) -> u32

Converts an Ipv4Addr into a host byte order u32.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe);
assert_eq!(0xcafebabe, u32::from(addr));
Source§

impl From<u32> for Ipv4Addr

Source§

fn from(ip: u32) -> Ipv4Addr

Converts a host byte order u32 into an Ipv4Addr.

§Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::from(0xcafebabe);
assert_eq!(Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe), addr);
Source§

impl FromStr for Ipv4Addr

Source§

type Err = AddrParseError

The associated error which can be returned from parsing.
Source§

fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError>

Parses a string s to return a value of this type. Read more
Source§

impl Hash for Ipv4Addr

Source§

fn hash<H: Hasher>(&self, s: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl Ord for Ipv4Addr

Source§

fn cmp(&self, other: &Ipv4Addr) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl PartialEq<IpAddr> for Ipv4Addr

Source§

fn eq(&self, other: &IpAddr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Ipv4Addr> for IpAddr

Source§

fn eq(&self, other: &Ipv4Addr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq for Ipv4Addr

Source§

fn eq(&self, other: &Ipv4Addr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialOrd<IpAddr> for Ipv4Addr

Source§

fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<Ipv4Addr> for IpAddr

Source§

fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd for Ipv4Addr

Source§

fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl Copy for Ipv4Addr

Source§

impl Eq for Ipv4Addr

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.