nu_path Type Alias AbsolutePath Copy item path Source pub type AbsolutePath = Path <Absolute >;
Expand description A path that is strictly absolute.
I.e., this path is guaranteed to never be relative.
§ Examples
AbsolutePath
s can be created by using try_absolute
on a Path
or by using try_new
.
use nu_path::{AbsolutePath, Path};
let path1 = Path::new("/foo" ).try_absolute().unwrap();
let path2 = AbsolutePath::try_new("/foo" ).unwrap();
assert_eq! (path1, path2);
You can also use AbsolutePath::try_from
or try_into
.
This supports attempted conversions from Path
as well as types in std::path
.
use nu_path::{AbsolutePath, Path};
let path1 = Path::new("/foo" );
let path1: & AbsolutePath = path1.try_into().unwrap();
let path2 = std::path::Path::new("/foo" );
let path2: & AbsolutePath = path2.try_into().unwrap();
assert_eq! (path1, path2)
struct AbsolutePath { }
Returns the canonical, absolute form of the path with all intermediate components
normalized and symbolic links resolved.
On Windows, this will also simplify to a winuser path.
This is an alias to std::fs::canonicalize
.
§ Examples
use nu_path::{AbsolutePath, PathBuf};
let path = AbsolutePath::try_new("/foo/test/../test/bar.rs" ).unwrap();
assert_eq! (path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs" ));
Reads a symbolic link, returning the file that the link points to.
This is an alias to std::fs::read_link
.
§ Examples
use nu_path::AbsolutePath;
let path = AbsolutePath::try_new("/laputa/sky_castle.rs" ).unwrap();
let path_link = path.read_link().expect("read_link call failed" );
Returns Ok(true)
if the path points at an existing entity.
This function will traverse symbolic links to query information about the destination file.
In case of broken symbolic links this will return Ok(false)
.
Path::exists
only checks whether or not a path was both found and readable.
By contrast, try_exists
will return Ok(true)
or Ok(false)
,
respectively, if the path was verified to exist or not exist.
If its existence can neither be confirmed nor denied, it will propagate an Err
instead.
This can be the case if e.g. listing permission is denied on one of the parent directories.
Note that while this avoids some pitfalls of the exists
method,
it still can not prevent time-of-check to time-of-use (TOCTOU) bugs.
You should only use it in scenarios where those bugs are not an issue.
§ Examples
use nu_path::AbsolutePath;
let path = AbsolutePath::try_new("/does_not_exist" ).unwrap();
assert! (!path.try_exists().unwrap());
let path = AbsolutePath::try_new("/root/secret_file.txt" ).unwrap();
assert! (path.try_exists().is_err());
Returns true
if the path exists on disk and is pointing at a symbolic link.
This function will not traverse symbolic links.
In case of a broken symbolic link this will also return true.
If you cannot access the directory containing the file, e.g., because of a permission error,
this will return false.
§ Examples
ⓘ use nu_path::AbsolutePath;
use std::os::unix::fs::symlink;
let link_path = AbsolutePath::try_new("/link" ).unwrap();
symlink("/origin_does_not_exist/" , link_path).unwrap();
assert_eq! (link_path.is_symlink(), true );
assert_eq! (link_path.exists(), false );
Queries the metadata about a file without following symlinks.
This is an alias to std::fs::symlink_metadata
.
§ Examples
use nu_path::AbsolutePath;
let path = AbsolutePath::try_new("/Minas/tirith" ).unwrap();
let metadata = path.symlink_metadata().expect("symlink_metadata call failed" );
println! ("{:?}" , metadata.file_type());
Converts this type into a shared reference of the (usually inferred) input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.
This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more This method returns an ordering between
self
and
other
values if one exists.
Read more Tests less than (for
self
and
other
) and is used by the
<
operator.
Read more Tests less than or equal to (for
self
and
other
) and is used by the
<=
operator.
Read more Tests greater than (for
self
and
other
) and is used by the
>
operator.
Read more Tests greater than or equal to (for
self
and
other
) and is used by
the
>=
operator.
Read more The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.