1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use crate::Value;

/// Prepares a list of "sounds like" matches (using edit distance) for the string you're trying to find
pub fn did_you_mean(obj_source: &Value, field_tried: String) -> Option<Vec<String>> {
    let possibilities = obj_source.data_descriptors();

    let mut possible_matches: Vec<_> = possibilities
        .into_iter()
        .map(|word| {
            let edit_distance = levenshtein_distance(&word, &field_tried);
            (edit_distance, word)
        })
        .collect();

    if !possible_matches.is_empty() {
        possible_matches.sort();
        let words_matched: Vec<String> = possible_matches.into_iter().map(|m| m.1).collect();
        Some(words_matched)
    } else {
        None
    }
}

// Borrowed from here https://github.com/wooorm/levenshtein-rs
pub fn levenshtein_distance(a: &str, b: &str) -> usize {
    let mut result = 0;

    /* Shortcut optimizations / degenerate cases. */
    if a == b {
        return result;
    }

    let length_a = a.chars().count();
    let length_b = b.chars().count();

    if length_a == 0 {
        return length_b;
    }

    if length_b == 0 {
        return length_a;
    }

    /* Initialize the vector.
     *
     * This is why it’s fast, normally a matrix is used,
     * here we use a single vector. */
    let mut cache: Vec<usize> = (1..).take(length_a).collect();
    let mut distance_a;
    let mut distance_b;

    /* Loop. */
    for (index_b, code_b) in b.chars().enumerate() {
        result = index_b;
        distance_a = index_b;

        for (index_a, code_a) in a.chars().enumerate() {
            distance_b = if code_a == code_b {
                distance_a
            } else {
                distance_a + 1
            };

            distance_a = cache[index_a];

            result = if distance_a > result {
                if distance_b > result {
                    result + 1
                } else {
                    distance_b
                }
            } else if distance_b > distance_a {
                distance_a + 1
            } else {
                distance_b
            };

            cache[index_a] = result;
        }
    }

    result
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::UntaggedValue;
    use indexmap::indexmap;
    use nu_source::Tag;

    #[test]
    fn did_you_mean_returns_possible_column_matches() {
        let value = UntaggedValue::row(indexmap! {
           "dog".to_string() => UntaggedValue::int(1).into(),
           "cat".to_string() => UntaggedValue::int(1).into(),
           "alt".to_string() => UntaggedValue::int(1).into(),
        });

        let source = Value {
            tag: Tag::unknown(),
            value,
        };

        assert_eq!(
            Some(vec![
                "cat".to_string(),
                "alt".to_string(),
                "dog".to_string()
            ]),
            did_you_mean(&source, "hat".to_string())
        )
    }

    #[test]
    fn did_you_mean_returns_no_matches_when_empty() {
        let empty_source = Value {
            tag: Tag::unknown(),
            value: UntaggedValue::row(indexmap! {}),
        };

        assert_eq!(None, did_you_mean(&empty_source, "hat".to_string()))
    }

    #[test]
    fn test_levenshtein_distance() {
        assert_eq!(super::levenshtein_distance("hello world", "hello world"), 0);
        assert_eq!(super::levenshtein_distance("hello", "hello world"), 6);
        assert_eq!(super::levenshtein_distance("°C", "°C"), 0);
        assert_eq!(super::levenshtein_distance("°", "°C"), 1);
    }
}