Struct opendp::measures::MaxDivergence
source · pub struct MaxDivergence<Q>(PhantomData<fn() -> Q>);
Expand description
$\epsilon$-pure differential privacy.
The greatest divergence between any randomly selected subset of the support.
§Proof Definition
§d
-closeness
For any two vectors $u, v \in \texttt{D}$ and any $d$ of generic type $\texttt{Q}$, we say that $M(u), M(v)$ are $d$-close under the max divergence measure (abbreviated as $D_{\infty}$) whenever
D_{\infty}(M(u) \| M(v)) = \max_{S \subseteq \textrm{Supp}(Y)} \Big[\ln \dfrac{\Pr[M(u) \in S]}{\Pr[M(v) \in S]} \Big] \leq d.
Tuple Fields§
§0: PhantomData<fn() -> Q>
Trait Implementations§
source§impl<Q> AmplifiableMeasure for MaxDivergence<Q>
impl<Q> AmplifiableMeasure for MaxDivergence<Q>
source§impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for MaxDivergence<Q>
impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for MaxDivergence<Q>
source§impl<Q> Clone for MaxDivergence<Q>
impl<Q> Clone for MaxDivergence<Q>
source§impl<Q> Debug for MaxDivergence<Q>
impl<Q> Debug for MaxDivergence<Q>
source§impl<Q> Default for MaxDivergence<Q>
impl<Q> Default for MaxDivergence<Q>
Auto Trait Implementations§
impl<Q> Freeze for MaxDivergence<Q>
impl<Q> RefUnwindSafe for MaxDivergence<Q>
impl<Q> Send for MaxDivergence<Q>
impl<Q> Sync for MaxDivergence<Q>
impl<Q> Unpin for MaxDivergence<Q>
impl<Q> UnwindSafe for MaxDivergence<Q>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§unsafe fn to_subset_unchecked(&self) -> SS
unsafe fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.