Struct opendp::measures::ZeroConcentratedDivergence

source ·
pub struct ZeroConcentratedDivergence<Q>(PhantomData<fn() -> Q>);
Expand description

$\rho$-zero concentrated differential privacy.

The greatest zero-concentrated divergence between any randomly selected subset of the support.

§Proof Definition

§d-closeness

For any two vectors $u, v \in \texttt{D}$ and any $d$ of generic type $\texttt{Q}$, define $P$ and $Q$ to be the distributions of $M(u)$ and $M(v)$. We say that $u, v$ are $d$-close under the alpha-Renyi divergence measure (abbreviated as $D_{\alpha}$) whenever

D_{\alpha}(P \| Q) = \frac{1}{1 - \alpha} \mathbb{E}_{x \sim Q} \Big[\ln \left( \dfrac{P(x)}{Q(x)} \right)^\alpha \Big] \leq d \alpha.

for all possible choices of $\alpha \in (1, \infty)$.

Tuple Fields§

§0: PhantomData<fn() -> Q>

Trait Implementations§

source§

impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for ZeroConcentratedDivergence<Q>

source§

fn concurrent(&self) -> Fallible<bool>

source§

fn compose(&self, d_i: Vec<Self::Distance>) -> Fallible<Self::Distance>

source§

impl<Q> Clone for ZeroConcentratedDivergence<Q>

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<Q> Debug for ZeroConcentratedDivergence<Q>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<Q> Default for ZeroConcentratedDivergence<Q>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<i128>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<i16>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<i32>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<i64>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<i8>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<isize>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<u128>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<u16>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<u32>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<u64>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<u8>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for AtomDomain<usize>
where f32: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<i128>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<i16>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<i32>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<i64>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<i8>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<isize>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<u128>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<u16>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<u32>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<u64>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<u8>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f32>, QI> for VectorDomain<AtomDomain<usize>>
where f32: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl GaussianDomain<ZeroConcentratedDivergence<f32>, f32> for AtomDomain<f32>

§

type InputMetric = AbsoluteDistance<f32>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl GaussianDomain<ZeroConcentratedDivergence<f32>, f32> for VectorDomain<AtomDomain<f32>>

§

type InputMetric = LpDistance<2, f32>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f32, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f32>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<i128>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<i16>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<i32>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<i64>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<i8>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<isize>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<u128>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<u16>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<u32>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<u64>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<u8>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for AtomDomain<usize>
where f64: InfCast<QI>,

§

type InputMetric = AbsoluteDistance<QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<i128>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<i16>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<i32>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<i64>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<i8>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<isize>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<u128>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<u16>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<u32>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<u64>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<u8>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<QI: Number> GaussianDomain<ZeroConcentratedDivergence<f64>, QI> for VectorDomain<AtomDomain<usize>>
where f64: InfCast<QI>,

§

type InputMetric = LpDistance<2, QI>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl GaussianDomain<ZeroConcentratedDivergence<f64>, f64> for AtomDomain<f64>

§

type InputMetric = AbsoluteDistance<f64>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl GaussianDomain<ZeroConcentratedDivergence<f64>, f64> for VectorDomain<AtomDomain<f64>>

§

type InputMetric = LpDistance<2, f64>

source§

fn make_gaussian( input_domain: Self, input_metric: Self::InputMetric, scale: f64, k: Option<i32> ) -> Fallible<Measurement<Self, Self::Carrier, Self::InputMetric, ZeroConcentratedDivergence<f64>>>

source§

impl<MI, QO> GaussianMeasure<MI> for ZeroConcentratedDivergence<QO>
where MI: Metric, MI::Distance: Number, QO: Float + InfCast<MI::Distance>, RBig: TryFrom<QO>,

§

type Atom = QO

source§

fn new_forward_map( scale: Self::Atom, relaxation: Self::Atom ) -> Fallible<PrivacyMap<MI, Self>>

source§

impl<Q> Measure for ZeroConcentratedDivergence<Q>

§

type Distance = Q

Proof Definition Read more
source§

impl<Q> PartialEq for ZeroConcentratedDivergence<Q>

source§

fn eq(&self, _other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

unsafe fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V