1.0.0[−][src]Struct orbtk_widgets::prelude::HashMap
A hash map implemented with quadratic probing and SIMD lookup.
By default, HashMap
uses a hashing algorithm selected to provide
resistance against HashDoS attacks. The algorithm is randomly seeded, and a
reasonable best-effort is made to generate this seed from a high quality,
secure source of randomness provided by the host without blocking the
program. Because of this, the randomness of the seed depends on the output
quality of the system's random number generator when the seed is created.
In particular, seeds generated when the system's entropy pool is abnormally
low such as during system boot may be of a lower quality.
The default hashing algorithm is currently SipHash 1-3, though this is subject to change at any point in the future. While its performance is very competitive for medium sized keys, other hashing algorithms will outperform it for small keys such as integers as well as large keys such as long strings, though those algorithms will typically not protect against attacks such as HashDoS.
The hashing algorithm can be replaced on a per-HashMap
basis using the
default
, with_hasher
, and with_capacity_and_hasher
methods. Many
alternative algorithms are available on crates.io, such as the fnv
crate.
It is required that the keys implement the Eq
and Hash
traits, although
this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]
.
If you implement these yourself, it is important that the following
property holds:
k1 == k2 -> hash(k1) == hash(k2)
In other words, if two keys are equal, their hashes must be equal.
It is a logic error for a key to be modified in such a way that the key's
hash, as determined by the Hash
trait, or its equality, as determined by
the Eq
trait, changes while it is in the map. This is normally only
possible through Cell
, RefCell
, global state, I/O, or unsafe code.
The hash table implementation is a Rust port of Google's SwissTable. The original C++ version of SwissTable can be found here, and this CppCon talk gives an overview of how the algorithm works.
Examples
use std::collections::HashMap; // Type inference lets us omit an explicit type signature (which // would be `HashMap<String, String>` in this example). let mut book_reviews = HashMap::new(); // Review some books. book_reviews.insert( "Adventures of Huckleberry Finn".to_string(), "My favorite book.".to_string(), ); book_reviews.insert( "Grimms' Fairy Tales".to_string(), "Masterpiece.".to_string(), ); book_reviews.insert( "Pride and Prejudice".to_string(), "Very enjoyable.".to_string(), ); book_reviews.insert( "The Adventures of Sherlock Holmes".to_string(), "Eye lyked it alot.".to_string(), ); // Check for a specific one. // When collections store owned values (String), they can still be // queried using references (&str). if !book_reviews.contains_key("Les Misérables") { println!("We've got {} reviews, but Les Misérables ain't one.", book_reviews.len()); } // oops, this review has a lot of spelling mistakes, let's delete it. book_reviews.remove("The Adventures of Sherlock Holmes"); // Look up the values associated with some keys. let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; for &book in &to_find { match book_reviews.get(book) { Some(review) => println!("{}: {}", book, review), None => println!("{} is unreviewed.", book) } } // Look up the value for a key (will panic if the key is not found). println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); // Iterate over everything. for (book, review) in &book_reviews { println!("{}: \"{}\"", book, review); }
HashMap
also implements an Entry API
, which allows
for more complex methods of getting, setting, updating and removing keys and
their values:
use std::collections::HashMap; // type inference lets us omit an explicit type signature (which // would be `HashMap<&str, u8>` in this example). let mut player_stats = HashMap::new(); fn random_stat_buff() -> u8 { // could actually return some random value here - let's just return // some fixed value for now 42 } // insert a key only if it doesn't already exist player_stats.entry("health").or_insert(100); // insert a key using a function that provides a new value only if it // doesn't already exist player_stats.entry("defence").or_insert_with(random_stat_buff); // update a key, guarding against the key possibly not being set let stat = player_stats.entry("attack").or_insert(100); *stat += random_stat_buff();
The easiest way to use HashMap
with a custom key type is to derive Eq
and Hash
.
We must also derive PartialEq
.
use std::collections::HashMap; #[derive(Hash, Eq, PartialEq, Debug)] struct Viking { name: String, country: String, } impl Viking { /// Creates a new Viking. fn new(name: &str, country: &str) -> Viking { Viking { name: name.to_string(), country: country.to_string() } } } // Use a HashMap to store the vikings' health points. let mut vikings = HashMap::new(); vikings.insert(Viking::new("Einar", "Norway"), 25); vikings.insert(Viking::new("Olaf", "Denmark"), 24); vikings.insert(Viking::new("Harald", "Iceland"), 12); // Use derived implementation to print the status of the vikings. for (viking, health) in &vikings { println!("{:?} has {} hp", viking, health); }
A HashMap
with fixed list of elements can be initialized from an array:
use std::collections::HashMap; let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)] .iter().cloned().collect(); // use the values stored in map
Implementations
impl<K, V> HashMap<K, V, RandomState>
[src]
pub fn new() -> HashMap<K, V, RandomState>
[src]
Creates an empty HashMap
.
The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
Examples
use std::collections::HashMap; let mut map: HashMap<&str, i32> = HashMap::new();
pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState>
[src]
Creates an empty HashMap
with the specified capacity.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
Examples
use std::collections::HashMap; let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);
impl<K, V, S> HashMap<K, V, S>
[src]
pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
1.7.0[src]
Creates an empty HashMap
which will use the given hash builder to hash
keys.
The created map has the default initial capacity.
Warning: hash_builder
is normally randomly generated, and
is designed to allow HashMaps to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashMap; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut map = HashMap::with_hasher(s); map.insert(1, 2);
pub fn with_capacity_and_hasher(
capacity: usize,
hash_builder: S
) -> HashMap<K, V, S>
1.7.0[src]
capacity: usize,
hash_builder: S
) -> HashMap<K, V, S>
Creates an empty HashMap
with the specified capacity, using hash_builder
to hash the keys.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
Warning: hash_builder
is normally randomly generated, and
is designed to allow HashMaps to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashMap; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut map = HashMap::with_capacity_and_hasher(10, s); map.insert(1, 2);
pub fn capacity(&self) -> usize
[src]
Returns the number of elements the map can hold without reallocating.
This number is a lower bound; the HashMap<K, V>
might be able to hold
more, but is guaranteed to be able to hold at least this many.
Examples
use std::collections::HashMap; let map: HashMap<i32, i32> = HashMap::with_capacity(100); assert!(map.capacity() >= 100);
pub fn keys(&self) -> Keys<'_, K, V>
[src]
An iterator visiting all keys in arbitrary order.
The iterator element type is &'a K
.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for key in map.keys() { println!("{}", key); }
pub fn values(&self) -> Values<'_, K, V>
[src]
An iterator visiting all values in arbitrary order.
The iterator element type is &'a V
.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for val in map.values() { println!("{}", val); }
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>
1.10.0[src]
An iterator visiting all values mutably in arbitrary order.
The iterator element type is &'a mut V
.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for val in map.values_mut() { *val = *val + 10; } for val in map.values() { println!("{}", val); }
pub fn iter(&self) -> Iter<'_, K, V>
[src]
An iterator visiting all key-value pairs in arbitrary order.
The iterator element type is (&'a K, &'a V)
.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for (key, val) in map.iter() { println!("key: {} val: {}", key, val); }
pub fn iter_mut(&mut self) -> IterMut<'_, K, V>
[src]
An iterator visiting all key-value pairs in arbitrary order,
with mutable references to the values.
The iterator element type is (&'a K, &'a mut V)
.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); // Update all values for (_, val) in map.iter_mut() { *val *= 2; } for (key, val) in &map { println!("key: {} val: {}", key, val); }
pub fn len(&self) -> usize
[src]
Returns the number of elements in the map.
Examples
use std::collections::HashMap; let mut a = HashMap::new(); assert_eq!(a.len(), 0); a.insert(1, "a"); assert_eq!(a.len(), 1);
pub fn is_empty(&self) -> bool
[src]
Returns true
if the map contains no elements.
Examples
use std::collections::HashMap; let mut a = HashMap::new(); assert!(a.is_empty()); a.insert(1, "a"); assert!(!a.is_empty());
pub fn drain(&mut self) -> Drain<'_, K, V>
1.6.0[src]
Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.
Examples
use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1, "a"); a.insert(2, "b"); for (k, v) in a.drain().take(1) { assert!(k == 1 || k == 2); assert!(v == "a" || v == "b"); } assert!(a.is_empty());
pub fn clear(&mut self)
[src]
Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.
Examples
use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1, "a"); a.clear(); assert!(a.is_empty());
pub fn hasher(&self) -> &S
1.9.0[src]
Returns a reference to the map's BuildHasher
.
Examples
use std::collections::HashMap; use std::collections::hash_map::RandomState; let hasher = RandomState::new(); let map: HashMap<i32, i32> = HashMap::with_hasher(hasher); let hasher: &RandomState = map.hasher();
impl<K, V, S> HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
[src]
K: Eq + Hash,
S: BuildHasher,
pub fn reserve(&mut self, additional: usize)
[src]
Reserves capacity for at least additional
more elements to be inserted
in the HashMap
. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize
.
Examples
use std::collections::HashMap; let mut map: HashMap<&str, i32> = HashMap::new(); map.reserve(10);
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
[src]
🔬 This is a nightly-only experimental API. (try_reserve
)
new API
Tries to reserve capacity for at least additional
more elements to be inserted
in the given HashMap<K,V>
. The collection may reserve more space to avoid
frequent reallocations.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
#![feature(try_reserve)] use std::collections::HashMap; let mut map: HashMap<&str, isize> = HashMap::new(); map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
pub fn shrink_to_fit(&mut self)
[src]
Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use std::collections::HashMap; let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); map.insert(1, 2); map.insert(3, 4); assert!(map.capacity() >= 100); map.shrink_to_fit(); assert!(map.capacity() >= 2);
pub fn shrink_to(&mut self, min_capacity: usize)
[src]
🔬 This is a nightly-only experimental API. (shrink_to
)
new API
Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Panics if the current capacity is smaller than the supplied minimum capacity.
Examples
#![feature(shrink_to)] use std::collections::HashMap; let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); map.insert(1, 2); map.insert(3, 4); assert!(map.capacity() >= 100); map.shrink_to(10); assert!(map.capacity() >= 10); map.shrink_to(0); assert!(map.capacity() >= 2);
pub fn entry(&mut self, key: K) -> Entry<'_, K, V>
[src]
Gets the given key's corresponding entry in the map for in-place manipulation.
Examples
use std::collections::HashMap; let mut letters = HashMap::new(); for ch in "a short treatise on fungi".chars() { let counter = letters.entry(ch).or_insert(0); *counter += 1; } assert_eq!(letters[&'s'], 2); assert_eq!(letters[&'t'], 3); assert_eq!(letters[&'u'], 1); assert_eq!(letters.get(&'y'), None);
pub fn get<Q>(&self, k: &Q) -> Option<&V> where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.get(&1), Some(&"a")); assert_eq!(map.get(&2), None);
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)> where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
1.40.0[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Returns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); assert_eq!(map.get_key_value(&2), None);
pub fn contains_key<Q>(&self, k: &Q) -> bool where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Returns true
if the map contains a value for the specified key.
The key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.contains_key(&1), true); assert_eq!(map.contains_key(&2), false);
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V> where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); if let Some(x) = map.get_mut(&1) { *x = "b"; } assert_eq!(map[&1], "b");
pub fn insert(&mut self, k: K, v: V) -> Option<V>
[src]
Inserts a key-value pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be ==
without being identical. See the module-level
documentation for more.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); assert_eq!(map.insert(37, "a"), None); assert_eq!(map.is_empty(), false); map.insert(37, "b"); assert_eq!(map.insert(37, "c"), Some("b")); assert_eq!(map[&37], "c");
pub fn remove<Q>(&mut self, k: &Q) -> Option<V> where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Removes a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.remove(&1), Some("a")); assert_eq!(map.remove(&1), None);
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)> where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
1.27.0[src]
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
Removes a key from the map, returning the stored key and value if the key was previously in the map.
The key may be any borrowed form of the map's key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.remove_entry(&1), Some((1, "a"))); assert_eq!(map.remove(&1), None);
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&K, &mut V) -> bool,
1.18.0[src]
F: FnMut(&K, &mut V) -> bool,
Retains only the elements specified by the predicate.
In other words, remove all pairs (k, v)
such that f(&k,&mut v)
returns false
.
Examples
use std::collections::HashMap; let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect(); map.retain(|&k, _| k % 2 == 0); assert_eq!(map.len(), 4);
pub fn into_keys(self) -> IntoKeys<K, V>
[src]
map_into_keys_values
)Creates a consuming iterator visiting all the keys in arbitrary order.
The map cannot be used after calling this.
The iterator element type is K
.
Examples
#![feature(map_into_keys_values)] use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); let vec: Vec<&str> = map.into_keys().collect();
pub fn into_values(self) -> IntoValues<K, V>
[src]
map_into_keys_values
)Creates a consuming iterator visiting all the values in arbitrary order.
The map cannot be used after calling this.
The iterator element type is V
.
Examples
#![feature(map_into_keys_values)] use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); let vec: Vec<i32> = map.into_values().collect();
impl<K, V, S> HashMap<K, V, S> where
S: BuildHasher,
[src]
S: BuildHasher,
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>
[src]
hash_raw_entry
)Creates a raw entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.
Raw entries are useful for such exotic situations as:
- Hash memoization
- Deferring the creation of an owned key until it is known to be required
- Using a search key that doesn't work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Because raw entries provide much more low-level control, it's much easier
to put the HashMap into an inconsistent state which, while memory-safe,
will cause the map to produce seemingly random results. Higher-level and
more foolproof APIs like entry
should be preferred when possible.
In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.
Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become "lost" if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn't happen (within the limits of memory-safety).
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>
[src]
hash_raw_entry
)Creates a raw immutable entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.
This is useful for
- Hash memoization
- Using a search key that doesn't work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Unless you are in such a situation, higher-level and more foolproof APIs like
get
should be preferred.
Immutable raw entries have very limited use; you might instead want raw_entry_mut
.
Trait Implementations
impl<K, V, S> Clone for HashMap<K, V, S> where
K: Clone,
S: Clone,
V: Clone,
[src]
K: Clone,
S: Clone,
V: Clone,
impl<K, V, S> Debug for HashMap<K, V, S> where
K: Debug,
V: Debug,
[src]
K: Debug,
V: Debug,
impl<K, V, S> Default for HashMap<K, V, S> where
S: Default,
[src]
S: Default,
fn default() -> HashMap<K, V, S>
[src]
Creates an empty HashMap<K, V, S>
, with the Default
value for the hasher.
impl<'de, K, V, S> Deserialize<'de> for HashMap<K, V, S> where
K: Deserialize<'de> + Eq + Hash,
S: BuildHasher + Default,
V: Deserialize<'de>,
[src]
K: Deserialize<'de> + Eq + Hash,
S: BuildHasher + Default,
V: Deserialize<'de>,
fn deserialize<D>(
deserializer: D
) -> Result<HashMap<K, V, S>, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
[src]
deserializer: D
) -> Result<HashMap<K, V, S>, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
impl<K, V, S> Eq for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
V: Eq,
[src]
K: Eq + Hash,
S: BuildHasher,
V: Eq,
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> where
K: Eq + Hash + Copy,
S: BuildHasher,
V: Copy,
1.4.0[src]
K: Eq + Hash + Copy,
S: BuildHasher,
V: Copy,
fn extend<T>(&mut self, iter: T) where
T: IntoIterator<Item = (&'a K, &'a V)>,
[src]
T: IntoIterator<Item = (&'a K, &'a V)>,
fn extend_one(&mut self, (&'a K, &'a V))
[src]
fn extend_reserve(&mut self, additional: usize)
[src]
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
[src]
K: Eq + Hash,
S: BuildHasher,
Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.
fn extend<T>(&mut self, iter: T) where
T: IntoIterator<Item = (K, V)>,
[src]
T: IntoIterator<Item = (K, V)>,
fn extend_one(&mut self, (K, V))
[src]
fn extend_reserve(&mut self, additional: usize)
[src]
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher + Default,
[src]
K: Eq + Hash,
S: BuildHasher + Default,
impl<K, V, S> FromParallelIterator<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash + Send,
S: BuildHasher + Default + Send,
V: Send,
[src]
K: Eq + Hash + Send,
S: BuildHasher + Default + Send,
V: Send,
Collects (key, value) pairs from a parallel iterator into a hashmap. If multiple pairs correspond to the same key, then the ones produced earlier in the parallel iterator will be overwritten, just as with a sequential iterator.
fn from_par_iter<I>(par_iter: I) -> HashMap<K, V, S> where
I: IntoParallelIterator<Item = (K, V)>,
[src]
I: IntoParallelIterator<Item = (K, V)>,
impl<'_, K, Q, V, S> Index<&'_ Q> for HashMap<K, V, S> where
K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash + ?Sized,
S: BuildHasher,
[src]
K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash + ?Sized,
S: BuildHasher,
type Output = V
The returned type after indexing.
fn index(&self, key: &Q) -> &V
[src]
Returns a reference to the value corresponding to the supplied key.
Panics
Panics if the key is not present in the HashMap
.
impl<'de, K, V, S, E> IntoDeserializer<'de, E> for HashMap<K, V, S> where
E: Error,
K: IntoDeserializer<'de, E> + Eq + Hash,
S: BuildHasher,
V: IntoDeserializer<'de, E>,
[src]
E: Error,
K: IntoDeserializer<'de, E> + Eq + Hash,
S: BuildHasher,
V: IntoDeserializer<'de, E>,
type Deserializer = MapDeserializer<'de, <HashMap<K, V, S> as IntoIterator>::IntoIter, E>
The type of the deserializer being converted into.
fn into_deserializer(
self
) -> <HashMap<K, V, S> as IntoDeserializer<'de, E>>::Deserializer
[src]
self
) -> <HashMap<K, V, S> as IntoDeserializer<'de, E>>::Deserializer
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
[src]
type Item = (&'a K, &'a V)
The type of the elements being iterated over.
type IntoIter = Iter<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Iter<'a, K, V>
[src]
impl<K, V, S> IntoIterator for HashMap<K, V, S>
[src]
type Item = (K, V)
The type of the elements being iterated over.
type IntoIter = IntoIter<K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IntoIter<K, V>
[src]
Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.
Examples
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); // Not possible with .iter() let vec: Vec<(&str, i32)> = map.into_iter().collect();
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
[src]
type Item = (&'a K, &'a mut V)
The type of the elements being iterated over.
type IntoIter = IterMut<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IterMut<'a, K, V>
[src]
impl<K, V, S> IntoParallelIterator for HashMap<K, V, S> where
K: Eq + Send + Hash,
S: BuildHasher,
V: Send,
[src]
K: Eq + Send + Hash,
S: BuildHasher,
V: Send,
type Item = <HashMap<K, V, S> as IntoIterator>::Item
The type of item that the parallel iterator will produce.
type Iter = IntoIter<K, V>
The parallel iterator type that will be created.
fn into_par_iter(self) -> <HashMap<K, V, S> as IntoParallelIterator>::Iter
[src]
impl<'a, K, V, S> IntoParallelIterator for &'a mut HashMap<K, V, S> where
K: Eq + Sync + Hash,
S: BuildHasher,
V: Send,
[src]
K: Eq + Sync + Hash,
S: BuildHasher,
V: Send,
type Item = <&'a mut HashMap<K, V, S> as IntoIterator>::Item
The type of item that the parallel iterator will produce.
type Iter = IterMut<'a, K, V>
The parallel iterator type that will be created.
fn into_par_iter(
self
) -> <&'a mut HashMap<K, V, S> as IntoParallelIterator>::Iter
[src]
self
) -> <&'a mut HashMap<K, V, S> as IntoParallelIterator>::Iter
impl<'a, K, V, S> IntoParallelIterator for &'a HashMap<K, V, S> where
K: Eq + Sync + Hash,
S: BuildHasher,
V: Sync,
[src]
K: Eq + Sync + Hash,
S: BuildHasher,
V: Sync,
type Item = <&'a HashMap<K, V, S> as IntoIterator>::Item
The type of item that the parallel iterator will produce.
type Iter = Iter<'a, K, V>
The parallel iterator type that will be created.
fn into_par_iter(self) -> <&'a HashMap<K, V, S> as IntoParallelIterator>::Iter
[src]
impl<'a, K, V, S> ParallelExtend<(&'a K, &'a V)> for HashMap<K, V, S> where
K: 'a + Copy + Eq + Hash + Send + Sync,
S: BuildHasher + Send,
V: 'a + Copy + Send + Sync,
[src]
K: 'a + Copy + Eq + Hash + Send + Sync,
S: BuildHasher + Send,
V: 'a + Copy + Send + Sync,
Extends a hash map with copied items from a parallel iterator.
fn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = (&'a K, &'a V)>,
[src]
I: IntoParallelIterator<Item = (&'a K, &'a V)>,
impl<K, V, S> ParallelExtend<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash + Send,
S: BuildHasher + Send,
V: Send,
[src]
K: Eq + Hash + Send,
S: BuildHasher + Send,
V: Send,
Extends a hash map with items from a parallel iterator.
fn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = (K, V)>,
[src]
I: IntoParallelIterator<Item = (K, V)>,
impl<K, V, S> PartialEq<HashMap<K, V, S>> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
V: PartialEq<V>,
[src]
K: Eq + Hash,
S: BuildHasher,
V: PartialEq<V>,
fn eq(&self, other: &HashMap<K, V, S>) -> bool
[src]
#[must_use]fn ne(&self, other: &Rhs) -> bool
[src]
impl<K, V, H> Serialize for HashMap<K, V, H> where
H: BuildHasher,
K: Serialize + Eq + Hash,
V: Serialize,
[src]
H: BuildHasher,
K: Serialize + Eq + Hash,
V: Serialize,
fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
[src]
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
impl<K, V, S> UnwindSafe for HashMap<K, V, S> where
K: UnwindSafe,
S: UnwindSafe,
V: UnwindSafe,
1.36.0[src]
K: UnwindSafe,
S: UnwindSafe,
V: UnwindSafe,
Auto Trait Implementations
impl<K, V, S> RefUnwindSafe for HashMap<K, V, S> where
K: RefUnwindSafe,
S: RefUnwindSafe,
V: RefUnwindSafe,
K: RefUnwindSafe,
S: RefUnwindSafe,
V: RefUnwindSafe,
impl<K, V, S> Send for HashMap<K, V, S> where
K: Send,
S: Send,
V: Send,
K: Send,
S: Send,
V: Send,
impl<K, V, S> Sync for HashMap<K, V, S> where
K: Sync,
S: Sync,
V: Sync,
K: Sync,
S: Sync,
V: Sync,
impl<K, V, S> Unpin for HashMap<K, V, S> where
K: Unpin,
S: Unpin,
V: Unpin,
K: Unpin,
S: Unpin,
V: Unpin,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<E> Component for E where
E: Any,
[src]
E: Any,
impl<T> DeserializeOwned for T where
T: for<'de> Deserialize<'de>,
[src]
T: for<'de> Deserialize<'de>,
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<I> IntoIterator for I where
I: Iterator,
[src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
impl<T> IntoParallelIterator for T where
T: ParallelIterator,
[src]
T: ParallelIterator,
type Iter = T
The parallel iterator type that will be created.
type Item = <T as ParallelIterator>::Item
The type of item that the parallel iterator will produce.
fn into_par_iter(self) -> T
[src]
impl<'data, I> IntoParallelRefIterator<'data> for I where
I: 'data + ?Sized,
&'data I: IntoParallelIterator,
[src]
I: 'data + ?Sized,
&'data I: IntoParallelIterator,
type Iter = <&'data I as IntoParallelIterator>::Iter
The type of the parallel iterator that will be returned.
type Item = <&'data I as IntoParallelIterator>::Item
The type of item that the parallel iterator will produce. This will typically be an &'data T
reference type. Read more
fn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter
[src]
impl<'data, I> IntoParallelRefMutIterator<'data> for I where
I: 'data + ?Sized,
&'data mut I: IntoParallelIterator,
[src]
I: 'data + ?Sized,
&'data mut I: IntoParallelIterator,
type Iter = <&'data mut I as IntoParallelIterator>::Iter
The type of iterator that will be created.
type Item = <&'data mut I as IntoParallelIterator>::Item
The type of item that will be produced; this is typically an &'data mut T
reference. Read more
fn par_iter_mut(
&'data mut self
) -> <I as IntoParallelRefMutIterator<'data>>::Iter
[src]
&'data mut self
) -> <I as IntoParallelRefMutIterator<'data>>::Iter
impl<T> SetParameter for T
fn set<T>(&mut self, value: T) -> <T as Parameter<Self>>::Result where
T: Parameter<Self>,
T: Parameter<Self>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,