penumbra_sdk_transaction/
memo.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
use std::{
    convert::{TryFrom, TryInto},
    fmt::Debug,
};

use anyhow::anyhow;

use decaf377_ka as ka;
use penumbra_sdk_asset::balance;
use penumbra_sdk_keys::{
    address::ADDRESS_LEN_BYTES,
    keys::OutgoingViewingKey,
    symmetric::{OvkWrappedKey, PayloadKey, PayloadKind, WrappedMemoKey},
    Address,
};
use penumbra_sdk_proto::{core::transaction::v1 as pbt, DomainType};
use penumbra_sdk_shielded_pool::{note, Note};
use penumbra_sdk_txhash::{EffectHash, EffectingData};

pub const MEMO_CIPHERTEXT_LEN_BYTES: usize = 528;

// This is the `MEMO_CIPHERTEXT_LEN_BYTES` - MAC size (16 bytes).
pub const MEMO_LEN_BYTES: usize = 512;

// This is the largest text length we can support
const MAX_TEXT_LEN: usize = MEMO_LEN_BYTES - ADDRESS_LEN_BYTES;

/// A method which reads out bytes in a lossy way, and trims out null bytes
fn raw_bytes_to_text(data: &[u8]) -> String {
    String::from_utf8_lossy(data)
        .trim_end_matches(0u8 as char)
        .to_string()
}

#[derive(Clone, Debug)]
pub struct MemoCiphertext(pub [u8; MEMO_CIPHERTEXT_LEN_BYTES]);

impl EffectingData for MemoCiphertext {
    fn effect_hash(&self) -> EffectHash {
        EffectHash::from_proto_effecting_data(&self.to_proto())
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct MemoPlaintext {
    return_address: Address,
    text: String,
}

impl MemoPlaintext {
    /// Create a new MemoPlaintext, checking that the text isn't long enough.
    ///
    /// The text being too long is the only reason this function will fail.
    pub fn new(return_address: Address, text: String) -> anyhow::Result<Self> {
        if text.len() > MAX_TEXT_LEN {
            anyhow::bail!(
                "memo text length must be <= {}, found {}",
                MAX_TEXT_LEN,
                text.len()
            );
        }
        Ok(Self {
            return_address,
            text,
        })
    }

    pub fn return_address(&self) -> Address {
        self.return_address.clone()
    }

    pub fn text(&self) -> &str {
        self.text.as_str()
    }
}

impl From<&MemoPlaintext> for Vec<u8> {
    fn from(plaintext: &MemoPlaintext) -> Vec<u8> {
        let mut bytes = vec![];
        bytes.extend_from_slice(&plaintext.return_address.to_vec());
        bytes.extend_from_slice(plaintext.text.as_bytes());
        bytes
    }
}

impl TryFrom<Vec<u8>> for MemoPlaintext {
    type Error = anyhow::Error;

    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
        if bytes.len() < 80 {
            anyhow::bail!("malformed memo plaintext: missing return address");
        }
        let return_address_bytes = &bytes[..80];
        let return_address: Address = return_address_bytes.try_into()?;
        let text = raw_bytes_to_text(&bytes[80..]);

        MemoPlaintext::new(return_address, text)
    }
}

impl MemoPlaintext {
    pub fn to_vec(&self) -> Vec<u8> {
        self.into()
    }

    pub fn blank_memo(return_address: Address) -> MemoPlaintext {
        MemoPlaintext {
            return_address,
            text: String::new(),
        }
    }
}

impl MemoCiphertext {
    /// Encrypt a memo, returning its ciphertext.
    pub fn encrypt(memo_key: PayloadKey, memo: &MemoPlaintext) -> anyhow::Result<MemoCiphertext> {
        let memo_bytes: Vec<u8> = memo.into();
        let memo_len = memo_bytes.len();
        if memo_len > MEMO_LEN_BYTES {
            anyhow::bail!(
                "provided memo plaintext of length {memo_len} exceeds maximum memo length of {MEMO_LEN_BYTES}"
            );
        }
        let mut m = [0u8; MEMO_LEN_BYTES];
        m[..memo_len].copy_from_slice(&memo_bytes);

        let encryption_result = memo_key.encrypt(m.to_vec(), PayloadKind::Memo);
        let ciphertext: [u8; MEMO_CIPHERTEXT_LEN_BYTES] = encryption_result
            .try_into()
            .expect("memo encryption result fits in ciphertext len");

        Ok(MemoCiphertext(ciphertext))
    }

    /// Decrypt a [`MemoCiphertext`] to generate a plaintext [`MemoPlaintext`].
    pub fn decrypt(
        memo_key: &PayloadKey,
        ciphertext: MemoCiphertext,
    ) -> anyhow::Result<MemoPlaintext> {
        let plaintext_bytes = MemoCiphertext::decrypt_bytes(memo_key, ciphertext)?;

        let return_address_bytes = &plaintext_bytes[..80];
        let return_address: Address = return_address_bytes.try_into()?;
        let text = raw_bytes_to_text(&plaintext_bytes[80..]);

        MemoPlaintext::new(return_address, text)
    }

    /// Decrypt a [`MemoCiphertext`] to generate a fixed-length slice of bytes.
    pub fn decrypt_bytes(
        memo_key: &PayloadKey,
        ciphertext: MemoCiphertext,
    ) -> anyhow::Result<[u8; MEMO_LEN_BYTES]> {
        let decryption_result = memo_key
            .decrypt(ciphertext.0.to_vec(), PayloadKind::Memo)
            .map_err(|_| anyhow!("decryption error"))?;
        let plaintext_bytes: [u8; MEMO_LEN_BYTES] = decryption_result.try_into().map_err(|_| {
            anyhow!("post-decryption, could not fit plaintext into memo size {MEMO_LEN_BYTES}")
        })?;
        Ok(plaintext_bytes)
    }

    /// Decrypt a [`MemoCiphertext`] using the wrapped OVK to generate a plaintext [`Memo`].
    pub fn decrypt_outgoing(
        wrapped_memo_key: &WrappedMemoKey,
        wrapped_ovk: OvkWrappedKey,
        cm: note::StateCommitment,
        cv: balance::Commitment,
        ovk: &OutgoingViewingKey,
        epk: &ka::Public,
        ciphertext: MemoCiphertext,
    ) -> anyhow::Result<MemoPlaintext> {
        let shared_secret = Note::decrypt_key(wrapped_ovk, cm, cv, ovk, epk)
            .map_err(|_| anyhow!("key decryption error"))?;

        let action_key = PayloadKey::derive(&shared_secret, epk);
        let memo_key = wrapped_memo_key
            .decrypt_outgoing(&action_key)
            .map_err(|_| anyhow!("could not decrypt wrapped memo key"))?;

        let plaintext = memo_key
            .decrypt(ciphertext.0.to_vec(), PayloadKind::Memo)
            .map_err(|_| anyhow!("decryption error"))?;

        let plaintext_bytes: [u8; MEMO_LEN_BYTES] = plaintext.try_into().map_err(|_| {
            anyhow!("post-decryption, could not fit plaintext into memo size {MEMO_LEN_BYTES}")
        })?;

        let return_address_bytes = &plaintext_bytes[..80];
        let return_address: Address = return_address_bytes.try_into()?;
        let text = raw_bytes_to_text(&plaintext_bytes[80..]);

        MemoPlaintext::new(return_address, text)
    }
}

impl TryFrom<&[u8]> for MemoCiphertext {
    type Error = anyhow::Error;

    fn try_from(input: &[u8]) -> Result<MemoCiphertext, Self::Error> {
        if input.len() > MEMO_CIPHERTEXT_LEN_BYTES {
            anyhow::bail!("provided memo ciphertext exceeds maximum memo size");
        }
        let mut mc = [0u8; MEMO_CIPHERTEXT_LEN_BYTES];
        mc[..input.len()].copy_from_slice(input);

        Ok(MemoCiphertext(mc))
    }
}

impl From<MemoPlaintext> for pbt::MemoPlaintext {
    fn from(plaintext: MemoPlaintext) -> pbt::MemoPlaintext {
        pbt::MemoPlaintext {
            return_address: Some(plaintext.return_address.into()),
            text: plaintext.text,
        }
    }
}

impl TryFrom<pbt::MemoCiphertext> for MemoCiphertext {
    type Error = anyhow::Error;

    fn try_from(msg: pbt::MemoCiphertext) -> Result<Self, Self::Error> {
        MemoCiphertext::try_from(msg.inner.to_vec().as_slice())
    }
}

impl From<MemoCiphertext> for pbt::MemoCiphertext {
    fn from(ciphertext: MemoCiphertext) -> pbt::MemoCiphertext {
        pbt::MemoCiphertext {
            inner: ciphertext.0.to_vec(),
        }
    }
}

impl DomainType for MemoCiphertext {
    type Proto = pbt::MemoCiphertext;
}

impl TryFrom<pbt::MemoPlaintext> for MemoPlaintext {
    type Error = anyhow::Error;

    fn try_from(msg: pbt::MemoPlaintext) -> Result<Self, Self::Error> {
        let sender = msg
            .return_address
            .ok_or_else(|| anyhow::anyhow!("message missing return address"))?
            .try_into()?;
        if (msg.text).len() > MEMO_LEN_BYTES - ADDRESS_LEN_BYTES {
            anyhow::bail!(
                "provided memo text exceeds {} bytes",
                MEMO_LEN_BYTES - ADDRESS_LEN_BYTES
            );
        }
        Ok(Self {
            return_address: sender,
            text: msg.text,
        })
    }
}

#[cfg(test)]
mod tests {
    use rand_core::OsRng;

    use super::*;
    use decaf377::Fr;
    use penumbra_sdk_asset::{asset, Value};
    use penumbra_sdk_keys::keys::{Bip44Path, SeedPhrase, SpendKey};

    use proptest::prelude::*;

    #[test]
    fn test_memo_encryption_and_decryption() {
        let mut rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());

        let esk = ka::Secret::new(&mut rng);

        // On the sender side, we have to encrypt the memo to put into the transaction-level,
        // and also the memo key to put on the action-level (output).
        let memo = MemoPlaintext {
            return_address: dest.clone(),
            text: String::from("Hi"),
        };
        let memo_key = PayloadKey::random_key(&mut OsRng);
        let ciphertext =
            MemoCiphertext::encrypt(memo_key.clone(), &memo).expect("can encrypt memo");
        let wrapped_memo_key = WrappedMemoKey::encrypt(
            &memo_key,
            esk.clone(),
            dest.transmission_key(),
            dest.diversified_generator(),
        );

        // On the recipient side, we have to decrypt the wrapped memo key, and then the memo.
        let epk = esk.diversified_public(dest.diversified_generator());
        let decrypted_memo_key = wrapped_memo_key
            .decrypt(epk, ivk)
            .expect("can decrypt memo key");
        let plaintext =
            MemoCiphertext::decrypt(&decrypted_memo_key, ciphertext).expect("can decrypt memo");

        assert_eq!(memo_key, decrypted_memo_key);
        assert_eq!(plaintext, memo);
    }

    #[test]
    fn test_memo_encryption_and_sender_decryption() -> anyhow::Result<()> {
        let mut rng = OsRng;

        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let ovk = fvk.outgoing();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());

        let value = Value {
            amount: 10u64.into(),
            asset_id: asset::Cache::with_known_assets()
                .get_unit("upenumbra")
                .unwrap()
                .id(),
        };
        let note = Note::generate(&mut rng, &dest, value);

        // On the sender side, we have to encrypt the memo to put into the transaction-level,
        // and also the memo key to put on the action-level (output).
        let memo = MemoPlaintext::new(dest.clone(), "Hello, friend".into())?;
        let memo_key = PayloadKey::random_key(&mut OsRng);
        let ciphertext =
            MemoCiphertext::encrypt(memo_key.clone(), &memo).expect("can encrypt memo");
        let esk = note.ephemeral_secret_key();
        let wrapped_memo_key = WrappedMemoKey::encrypt(
            &memo_key,
            esk.clone(),
            dest.transmission_key(),
            dest.diversified_generator(),
        );

        let value_blinding = Fr::rand(&mut rng);
        let cv = note.value().commit(value_blinding);
        let wrapped_ovk = note.encrypt_key(ovk, cv);

        // Later, still on the sender side, we decrypt the memo by using the decrypt_outgoing method.
        let epk = esk.diversified_public(dest.diversified_generator());
        let plaintext = MemoCiphertext::decrypt_outgoing(
            &wrapped_memo_key,
            wrapped_ovk,
            note.commit(),
            cv,
            ovk,
            &epk,
            ciphertext,
        )
        .expect("can decrypt memo");

        assert_eq!(plaintext, memo);

        Ok(())
    }

    proptest! {
        // We generate random strings, up to 10k chars long.
        // Since UTF-8 represents each char using 1 to 4 bytes,
        // we need to test strings up to (MEMO_LEN_BYTES * 4 = 2048)
        // chars in length. That's the intended upper bound of what
        // the memo parsing will handle, but for the sake of tests,
        // let's raise it 2048 -> 10,000. Doing so only adds a fraction
        // of a second to the length of the test run.
        #[test]
        fn test_memo_size_limit(s in "\\PC{0,10000}") {
            let mut rng = OsRng;
            let memo_key = PayloadKey::random_key(&mut rng);
            let memo_address = Address::dummy(&mut rng);
            let memo_text = s;
            let memo = {
                let text_len = memo_text.len();
                let memo = MemoPlaintext::new(memo_address, memo_text);
                if text_len > MAX_TEXT_LEN {
                    assert!(memo.is_err());
                    return Ok(());
                }
                assert!(memo.is_ok());
                memo.unwrap()
            };
            let ciphertext_result = MemoCiphertext::encrypt(memo_key.clone(), &memo);
            if memo.to_vec().len() > MEMO_LEN_BYTES {
                assert!(ciphertext_result.is_err());
            } else {
                assert!(ciphertext_result.is_ok());
                let plaintext = MemoCiphertext::decrypt(&memo_key, ciphertext_result.unwrap()).unwrap();
                assert_eq!(plaintext, memo);
            }
        }
    }
}