Enum polars_plan::dsl::Expr
source · pub enum Expr {
Show 24 variants
Alias(Box<Expr>, Arc<str>),
Column(Arc<str>),
Columns(Vec<String>),
DtypeColumn(Vec<DataType>),
Literal(LiteralValue),
BinaryExpr {
left: Box<Expr>,
op: Operator,
right: Box<Expr>,
},
Cast {
expr: Box<Expr>,
data_type: DataType,
strict: bool,
},
Sort {
expr: Box<Expr>,
options: SortOptions,
},
Take {
expr: Box<Expr>,
idx: Box<Expr>,
},
SortBy {
expr: Box<Expr>,
by: Vec<Expr>,
reverse: Vec<bool>,
},
Agg(AggExpr),
Ternary {
predicate: Box<Expr>,
truthy: Box<Expr>,
falsy: Box<Expr>,
},
Function {
input: Vec<Expr>,
function: FunctionExpr,
options: FunctionOptions,
},
Explode(Box<Expr>),
Filter {
input: Box<Expr>,
by: Box<Expr>,
},
Window {
function: Box<Expr>,
partition_by: Vec<Expr>,
order_by: Option<Box<Expr>>,
options: WindowOptions,
},
Wildcard,
Slice {
input: Box<Expr>,
offset: Box<Expr>,
length: Box<Expr>,
},
Exclude(Box<Expr>, Vec<Excluded>),
KeepName(Box<Expr>),
Count,
Nth(i64),
RenameAlias {
function: SpecialEq<Arc<dyn RenameAliasFn>>,
expr: Box<Expr>,
},
AnonymousFunction {
input: Vec<Expr>,
function: SpecialEq<Arc<dyn SeriesUdf>>,
output_type: GetOutput,
options: FunctionOptions,
},
}
Expand description
Queries consists of multiple expressions.
Variants§
Alias(Box<Expr>, Arc<str>)
Column(Arc<str>)
Columns(Vec<String>)
DtypeColumn(Vec<DataType>)
Literal(LiteralValue)
BinaryExpr
Cast
Sort
Take
SortBy
Agg(AggExpr)
Ternary
A ternary operation if true then “foo” else “bar”
Function
Explode(Box<Expr>)
Filter
Window
Fields
options: WindowOptions
See postgres window functions
Wildcard
Slice
Fields
Exclude(Box<Expr>, Vec<Excluded>)
Can be used in a select statement to exclude a column from selection
KeepName(Box<Expr>)
Set root name as Alias
Count
Special case that does not need columns
Nth(i64)
Take the nth column in the DataFrame
RenameAlias
AnonymousFunction
Implementations§
source§impl Expr
impl Expr
sourcepub fn to_dot(&self) -> PolarsResult<String>
Available on crate feature dot_diagram
only.
pub fn to_dot(&self) -> PolarsResult<String>
dot_diagram
only.Get a dot language representation of the Expression.
source§impl Expr
impl Expr
sourcepub fn is_not_null(self) -> Self
pub fn is_not_null(self) -> Self
Run is_not_null operation on Expr
.
sourcepub fn drop_nulls(self) -> Self
pub fn drop_nulls(self) -> Self
Drop null values
sourcepub fn quantile(self, quantile: Expr, interpol: QuantileInterpolOptions) -> Self
pub fn quantile(self, quantile: Expr, interpol: QuantileInterpolOptions) -> Self
Compute the quantile per group.
sourcepub fn agg_groups(self) -> Self
pub fn agg_groups(self) -> Self
Get the group indexes of the group by operation.
sourcepub fn slice<E: Into<Expr>, F: Into<Expr>>(self, offset: E, length: F) -> Self
pub fn slice<E: Into<Expr>, F: Into<Expr>>(self, offset: E, length: F) -> Self
Slice the Series.
offset
may be negative.
sourcepub fn append<E: Into<Expr>>(self, other: E, upcast: bool) -> Self
pub fn append<E: Into<Expr>>(self, other: E, upcast: bool) -> Self
Append expressions. This is done by adding the chunks of other
to this Series
.
sourcepub fn unique_stable(self) -> Self
pub fn unique_stable(self) -> Self
Get unique values of this expression, while maintaining order.
This requires more work than Expr::unique
.
sourcepub fn arg_unique(self) -> Self
pub fn arg_unique(self) -> Self
Get the first index of unique values of this expression.
sourcepub fn arg_sort(self, sort_options: SortOptions) -> Self
pub fn arg_sort(self, sort_options: SortOptions) -> Self
Get the index values that would sort this expression.
sourcepub fn search_sorted<E: Into<Expr>>(self, element: E) -> Expr
pub fn search_sorted<E: Into<Expr>>(self, element: E) -> Expr
Find indices where elements should be inserted to maintain order.
sourcepub fn strict_cast(self, data_type: DataType) -> Self
pub fn strict_cast(self, data_type: DataType) -> Self
Cast expression to another data type. Throws an error if conversion had overflows
sourcepub fn sort(self, reverse: bool) -> Self
pub fn sort(self, reverse: bool) -> Self
Sort in increasing order. See the eager implementation.
sourcepub fn sort_with(self, options: SortOptions) -> Self
pub fn sort_with(self, options: SortOptions) -> Self
Sort with given options.
sourcepub fn top_k(self, k: usize, reverse: bool) -> Self
pub fn top_k(self, k: usize, reverse: bool) -> Self
Returns the k
largest elements.
This has time complexity O(n + k log(n))
.
sourcepub fn map<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn map<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
Apply a function/closure once the logical plan get executed.
This function is very similar to Expr::apply
, but differs in how it handles aggregations.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.
It is the responsibility of the caller that the schema is correct by giving the correct output_type. If None given the output type of the input expr is used.
sourcepub fn map_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: GetOutput
) -> Selfwhere
F: Fn(&mut [Series]) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn map_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: GetOutput
) -> Selfwhere
F: Fn(&mut [Series]) -> PolarsResult<Series> + 'static + Send + Sync,
sourcepub fn map_list<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn map_list<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
Apply a function/closure once the logical plan get executed.
This function is very similar to apply, but differs in how it handles aggregations.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.map_list
should be used when the function expects a list aggregated series.
sourcepub fn function_with_options<F>(
self,
function: F,
output_type: GetOutput,
options: FunctionOptions
) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn function_with_options<F>(
self,
function: F,
output_type: GetOutput,
options: FunctionOptions
) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
A function that cannot be expressed with map
or apply
and requires extra settings.
sourcepub fn apply<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn apply<F>(self, function: F, output_type: GetOutput) -> Selfwhere
F: Fn(Series) -> PolarsResult<Series> + 'static + Send + Sync,
Apply a function/closure over the groups. This should only be used in a groupby aggregation.
It is the responsibility of the caller that the schema is correct by giving the correct output_type. If None given the output type of the input expr is used.
This difference with map is that apply
will create a separate Series
per group.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.
sourcepub fn apply_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: GetOutput
) -> Selfwhere
F: Fn(&mut [Series]) -> PolarsResult<Series> + 'static + Send + Sync,
pub fn apply_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: GetOutput
) -> Selfwhere
F: Fn(&mut [Series]) -> PolarsResult<Series> + 'static + Send + Sync,
Apply a function/closure over the groups with many arguments. This should only be used in a groupby aggregation.
See the Expr::apply
function for the differences between map
and apply
.
pub fn apply_many_private(
self,
function_expr: FunctionExpr,
arguments: &[Expr],
auto_explode: bool,
cast_to_supertypes: bool
) -> Self
pub fn map_many_private(
self,
function_expr: FunctionExpr,
arguments: &[Expr],
cast_to_supertypes: bool
) -> Self
sourcepub fn is_infinite(self) -> Self
pub fn is_infinite(self) -> Self
Get mask of infinite values if dtype is Float
sourcepub fn is_not_nan(self) -> Self
pub fn is_not_nan(self) -> Self
Get inverse mask of NaN values if dtype is Float
sourcepub fn shift(self, periods: i64) -> Self
pub fn shift(self, periods: i64) -> Self
Shift the values in the array by some period. See the eager implementation.
sourcepub fn shift_and_fill<E: Into<Expr>>(self, periods: i64, fill_value: E) -> Self
pub fn shift_and_fill<E: Into<Expr>>(self, periods: i64, fill_value: E) -> Self
Shift the values in the array by some period and fill the resulting empty values.
sourcepub fn cumsum(self, reverse: bool) -> Self
Available on crate feature cum_agg
only.
pub fn cumsum(self, reverse: bool) -> Self
cum_agg
only.Get an array with the cumulative sum computed at every element
sourcepub fn cumprod(self, reverse: bool) -> Self
Available on crate feature cum_agg
only.
pub fn cumprod(self, reverse: bool) -> Self
cum_agg
only.Get an array with the cumulative product computed at every element
sourcepub fn cummin(self, reverse: bool) -> Self
Available on crate feature cum_agg
only.
pub fn cummin(self, reverse: bool) -> Self
cum_agg
only.Get an array with the cumulative min computed at every element
sourcepub fn cummax(self, reverse: bool) -> Self
Available on crate feature cum_agg
only.
pub fn cummax(self, reverse: bool) -> Self
cum_agg
only.Get an array with the cumulative max computed at every element
sourcepub fn product(self) -> Self
Available on crate feature product
only.
pub fn product(self) -> Self
product
only.Get the product aggregation of an expression
sourcepub fn backward_fill(self, limit: FillNullLimit) -> Self
pub fn backward_fill(self, limit: FillNullLimit) -> Self
Fill missing value with next non-null.
sourcepub fn forward_fill(self, limit: FillNullLimit) -> Self
pub fn forward_fill(self, limit: FillNullLimit) -> Self
Fill missing value with previous non-null.
sourcepub fn round(self, decimals: u32) -> Self
Available on crate feature round_series
only.
pub fn round(self, decimals: u32) -> Self
round_series
only.Round underlying floating point array to given decimal numbers.
sourcepub fn floor(self) -> Self
Available on crate feature round_series
only.
pub fn floor(self) -> Self
round_series
only.Floor underlying floating point array to the lowest integers smaller or equal to the float value.
sourcepub fn ceil(self) -> Self
Available on crate feature round_series
only.
pub fn ceil(self) -> Self
round_series
only.Ceil underlying floating point array to the highest integers smaller or equal to the float value.
sourcepub fn clip(self, min: AnyValue<'_>, max: AnyValue<'_>) -> Self
Available on crate feature round_series
only.
pub fn clip(self, min: AnyValue<'_>, max: AnyValue<'_>) -> Self
round_series
only.Clip underlying values to a set boundary.
sourcepub fn clip_max(self, max: AnyValue<'_>) -> Self
Available on crate feature round_series
only.
pub fn clip_max(self, max: AnyValue<'_>) -> Self
round_series
only.Clip underlying values to a set boundary.
sourcepub fn clip_min(self, min: AnyValue<'_>) -> Self
Available on crate feature round_series
only.
pub fn clip_min(self, min: AnyValue<'_>) -> Self
round_series
only.Clip underlying values to a set boundary.
sourcepub fn abs(self) -> Self
Available on crate feature abs
only.
pub fn abs(self) -> Self
abs
only.Convert all values to their absolute/positive value.
sourcepub fn over<E: AsRef<[IE]>, IE: Into<Expr> + Clone>(
self,
partition_by: E
) -> Self
pub fn over<E: AsRef<[IE]>, IE: Into<Expr> + Clone>(
self,
partition_by: E
) -> Self
Apply window function over a subgroup. This is similar to a groupby + aggregation + self join. Or similar to window functions in Postgres.
Example
#[macro_use] extern crate polars_core;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
fn example() -> PolarsResult<()> {
let df = df! {
"groups" => &[1, 1, 2, 2, 1, 2, 3, 3, 1],
"values" => &[1, 2, 3, 4, 5, 6, 7, 8, 8]
}?;
let out = df
.lazy()
.select(&[
col("groups"),
sum("values").over([col("groups")]),
])
.collect()?;
dbg!(&out);
Ok(())
}
Outputs:
╭────────┬────────╮
│ groups ┆ values │
│ --- ┆ --- │
│ i32 ┆ i32 │
╞════════╪════════╡
│ 1 ┆ 16 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 1 ┆ 16 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 13 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 13 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ ... ┆ ... │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 1 ┆ 16 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 13 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ 15 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ 15 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 1 ┆ 16 │
╰────────┴────────╯
sourcepub fn fill_null<E: Into<Expr>>(self, fill_value: E) -> Self
pub fn fill_null<E: Into<Expr>>(self, fill_value: E) -> Self
Replace the null values by a value.
sourcepub fn fill_nan<E: Into<Expr>>(self, fill_value: E) -> Self
pub fn fill_nan<E: Into<Expr>>(self, fill_value: E) -> Self
Replace the floating point NaN
values by a value.
sourcepub fn count(self) -> Self
pub fn count(self) -> Self
Count the values of the Series or Get counts of the group by operation.
sourcepub fn is_duplicated(self) -> Self
pub fn is_duplicated(self) -> Self
Get a mask of duplicated values
pub fn xor<E: Into<Expr>>(self, expr: E) -> Self
sourcepub fn filter<E: Into<Expr>>(self, predicate: E) -> Self
pub fn filter<E: Into<Expr>>(self, predicate: E) -> Self
Filter a single column Should be used in aggregation context. If you want to filter on a DataFrame level, use LazyFrame::filter
sourcepub fn is_in<E: Into<Expr>>(self, other: E) -> Self
Available on crate feature is_in
only.
pub fn is_in<E: Into<Expr>>(self, other: E) -> Self
is_in
only.Check if the values of the left expression are in the lists of the right expr.
sourcepub fn sort_by<E: AsRef<[IE]>, IE: Into<Expr> + Clone, R: AsRef<[bool]>>(
self,
by: E,
reverse: R
) -> Expr
pub fn sort_by<E: AsRef<[IE]>, IE: Into<Expr> + Clone, R: AsRef<[bool]>>(
self,
by: E,
reverse: R
) -> Expr
Sort this column by the ordering of another column. Can also be used in a groupby context to sort the groups.
sourcepub fn repeat_by<E: Into<Expr>>(self, by: E) -> Expr
Available on crate feature repeat_by
only.
pub fn repeat_by<E: Into<Expr>>(self, by: E) -> Expr
repeat_by
only.Repeat the column n
times, where n
is determined by the values in by
.
This yields an Expr
of dtype List
sourcepub fn is_first(self) -> Expr
Available on crate feature is_first
only.
pub fn is_first(self) -> Expr
is_first
only.Get a mask of the first unique value.
pub fn dot<E: Into<Expr>>(self, other: E) -> Expr
dot_product
only.sourcepub fn mode(self) -> Expr
Available on crate feature mode
only.
pub fn mode(self) -> Expr
mode
only.Compute the mode(s) of this column. This is the most occurring value.
sourcepub fn keep_name(self) -> Expr
pub fn keep_name(self) -> Expr
Keep the original root name
use polars_core::prelude::*;
use polars_lazy::prelude::*;
fn example(df: LazyFrame) -> LazyFrame {
df.select([
// even thought the alias yields a different column name,
// `keep_name` will make sure that the original column name is used
col("*").alias("foo").keep_name()
])
}
sourcepub fn map_alias<F>(self, function: F) -> Exprwhere
F: Fn(&str) -> PolarsResult<String> + 'static + Send + Sync,
pub fn map_alias<F>(self, function: F) -> Exprwhere
F: Fn(&str) -> PolarsResult<String> + 'static + Send + Sync,
Define an alias by mapping a function over the original root column name.
sourcepub fn exclude(self, columns: impl IntoVec<String>) -> Expr
pub fn exclude(self, columns: impl IntoVec<String>) -> Expr
Exclude a column from a wildcard/regex selection.
You may also use regexes in the exclude as long as they start with ^
and end with $
/
Example
use polars_core::prelude::*;
use polars_lazy::prelude::*;
// Select all columns except foo.
fn example(df: DataFrame) -> LazyFrame {
df.lazy()
.select(&[
col("*").exclude(&["foo"])
])
}
pub fn exclude_dtype<D: AsRef<[DataType]>>(self, dtypes: D) -> Expr
pub fn interpolate(self, method: InterpolationMethod) -> Expr
interpolate
only.sourcepub fn rolling_min(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_min(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling min See: [ChunkedArray::rolling_min]
sourcepub fn rolling_max(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_max(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling max See: [ChunkedArray::rolling_max]
sourcepub fn rolling_mean(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_mean(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling mean See: [ChunkedArray::rolling_mean]
sourcepub fn rolling_sum(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_sum(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling sum See: [ChunkedArray::rolling_sum]
sourcepub fn rolling_median(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_median(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling median See:
[ChunkedArray::rolling_median
]
sourcepub fn rolling_quantile(
self,
quantile: f64,
interpolation: QuantileInterpolOptions,
options: RollingOptions
) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_quantile(
self,
quantile: f64,
interpolation: QuantileInterpolOptions,
options: RollingOptions
) -> Expr
rolling_window
only.Apply a rolling quantile See:
[ChunkedArray::rolling_quantile
]
sourcepub fn rolling_var(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_var(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling variance
sourcepub fn rolling_std(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_std(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling std-dev
sourcepub fn rolling_skew(self, window_size: usize, bias: bool) -> Expr
Available on crate features rolling_window
and moment
only.
pub fn rolling_skew(self, window_size: usize, bias: bool) -> Expr
rolling_window
and moment
only.Apply a rolling skew
sourcepub fn rolling_apply(
self,
f: Arc<dyn Fn(&Series) -> Series + Send + Sync>,
output_type: GetOutput,
options: RollingOptionsFixedWindow
) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_apply(
self,
f: Arc<dyn Fn(&Series) -> Series + Send + Sync>,
output_type: GetOutput,
options: RollingOptionsFixedWindow
) -> Expr
rolling_window
only.Apply a custom function over a rolling/ moving window of the array. This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.
sourcepub fn rolling_apply_float<F>(self, window_size: usize, f: F) -> Exprwhere
F: 'static + FnMut(&mut Float64Chunked) -> Option<f64> + Send + Sync + Copy,
Available on crate feature rolling_window
only.
pub fn rolling_apply_float<F>(self, window_size: usize, f: F) -> Exprwhere
F: 'static + FnMut(&mut Float64Chunked) -> Option<f64> + Send + Sync + Copy,
rolling_window
only.Apply a custom function over a rolling/ moving window of the array. Prefer this over rolling_apply in case of floating point numbers as this is faster. This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.
pub fn rank(self, options: RankOptions) -> Expr
rank
only.pub fn diff(self, n: usize, null_behavior: NullBehavior) -> Expr
diff
only.pub fn pct_change(self, n: usize) -> Expr
pct_change
only.sourcepub fn skew(self, bias: bool) -> Expr
Available on crate feature moment
only.
pub fn skew(self, bias: bool) -> Expr
moment
only.Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For
uni-modal continuous distributions, a skewness value greater than zero means
that there is more weight in the right tail of the distribution. The
function skewtest
can be used to determine if the skewness value
is close enough to zero, statistically speaking.
see: https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/stats/stats.py#L1024
pub fn kurtosis(self, fisher: bool, bias: bool) -> Expr
moment
only.sourcepub fn upper_bound(self) -> Expr
pub fn upper_bound(self) -> Expr
Get maximal value that could be hold by this dtype.
sourcepub fn lower_bound(self) -> Expr
pub fn lower_bound(self) -> Expr
Get minimal value that could be hold by this dtype.
pub fn reshape(self, dims: &[i64]) -> Self
pub fn shuffle(self, seed: Option<u64>) -> Self
pub fn sample_n(
self,
n: usize,
with_replacement: bool,
shuffle: bool,
seed: Option<u64>
) -> Self
pub fn sample_frac(
self,
frac: f64,
with_replacement: bool,
shuffle: bool,
seed: Option<u64>
) -> Self
pub fn ewm_mean(self, options: EWMOptions) -> Self
pub fn ewm_std(self, options: EWMOptions) -> Self
pub fn ewm_var(self, options: EWMOptions) -> Self
sourcepub fn shrink_dtype(self) -> Self
pub fn shrink_dtype(self) -> Self
Shrink numeric columns to the minimal required datatype
needed to fit the extrema of this Series
.
This can be used to reduce memory pressure.
sourcepub fn value_counts(self, multithreaded: bool, sorted: bool) -> Self
Available on crate feature dtype-struct
only.
pub fn value_counts(self, multithreaded: bool, sorted: bool) -> Self
dtype-struct
only.Count all unique values and create a struct mapping value to count Note that it is better to turn multithreaded off in the aggregation context
sourcepub fn unique_counts(self) -> Self
Available on crate feature unique_counts
only.
pub fn unique_counts(self) -> Self
unique_counts
only.Returns a count of the unique values in the order of appearance.
This method differs from [Expr::value_counts]
in that it does not return the
values, only the counts and might be faster
sourcepub fn log(self, base: f64) -> Self
Available on crate feature log
only.
pub fn log(self, base: f64) -> Self
log
only.Compute the logarithm to a given base
sourcepub fn exp(self) -> Self
Available on crate feature log
only.
pub fn exp(self) -> Self
log
only.Calculate the exponential of all elements in the input array
sourcepub fn entropy(self, base: f64, normalize: bool) -> Self
Available on crate feature log
only.
pub fn entropy(self, base: f64, normalize: bool) -> Self
log
only.Compute the entropy as -sum(pk * log(pk)
.
where pk
are discrete probabilities.
sourcepub fn null_count(self) -> Expr
pub fn null_count(self) -> Expr
Get the null count of the column/group
sourcepub fn set_sorted(self, sorted: IsSorted) -> Expr
pub fn set_sorted(self, sorted: IsSorted) -> Expr
Set this Series
as sorted
so that downstream code can use
fast paths for sorted arrays.
Warning
This can lead to incorrect results if this Series
is not sorted!!
Use with care!
sourcepub fn hash(self, k0: u64, k1: u64, k2: u64, k3: u64) -> Expr
pub fn hash(self, k0: u64, k1: u64, k2: u64, k3: u64) -> Expr
Compute the hash of every element
pub fn str(self) -> StringNameSpace
pub fn dt(self) -> DateLikeNameSpace
pub fn arr(self) -> ListNameSpace
pub fn cat(self) -> CategoricalNameSpace
pub fn struct_(self) -> StructNameSpace
pub fn meta(self) -> MetaNameSpace
Trait Implementations§
source§impl<'de> Deserialize<'de> for Expr
impl<'de> Deserialize<'de> for Expr
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl<'a> IntoIterator for &'a Expr
impl<'a> IntoIterator for &'a Expr
source§impl PartialEq<Expr> for Expr
impl PartialEq<Expr> for Expr
impl Eq for Expr
impl StructuralPartialEq for Expr
Auto Trait Implementations§
impl !RefUnwindSafe for Expr
impl Send for Expr
impl Sync for Expr
impl Unpin for Expr
impl !UnwindSafe for Expr
Blanket Implementations§
source§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.