#[repr(transparent)]
pub struct AtomicF64 { /* private fields */ }
Available on crate feature float only.
Expand description

A floating point type which can be safely shared between threads.

This type has the same in-memory representation as the underlying floating point type, f64.

Implementations§

source§

impl AtomicF64

source

pub const fn new(v: f64) -> Self

Creates a new atomic float.

source

pub fn is_lock_free() -> bool

Returns true if operations on values of this type are lock-free.

If the compiler or the platform doesn’t support the necessary atomic instructions, global locks for every potentially concurrent atomic operation will be used.

source

pub const fn is_always_lock_free() -> bool

Returns true if operations on values of this type are lock-free.

If the compiler or the platform doesn’t support the necessary atomic instructions, global locks for every potentially concurrent atomic operation will be used.

Note: If the atomic operation relies on dynamic CPU feature detection, this type may be lock-free even if the function returns false.

source

pub fn get_mut(&mut self) -> &mut f64

Returns a mutable reference to the underlying float.

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

source

pub fn into_inner(self) -> f64

Consumes the atomic and returns the contained value.

This is safe because passing self by value guarantees that no other threads are concurrently accessing the atomic data.

source

pub fn load(&self, order: Ordering) -> f64

Loads a value from the atomic float.

load takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.

Panics

Panics if order is Release or AcqRel.

source

pub fn store(&self, val: f64, order: Ordering)

Stores a value into the atomic float.

store takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.

Panics

Panics if order is Acquire or AcqRel.

source

pub fn swap(&self, val: f64, order: Ordering) -> f64

Stores a value into the atomic float, returning the previous value.

swap takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn compare_exchange( &self, current: f64, new: f64, success: Ordering, failure: Ordering ) -> Result<f64, f64>

Stores a value into the atomic float if the current value is the same as the current value.

The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal to current.

compare_exchange takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Panics

Panics if failure is Release, AcqRel.

source

pub fn compare_exchange_weak( &self, current: f64, new: f64, success: Ordering, failure: Ordering ) -> Result<f64, f64>

Stores a value into the atomic float if the current value is the same as the current value. Unlike compare_exchange this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.

compare_exchange_weak takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Panics

Panics if failure is Release, AcqRel.

source

pub fn fetch_add(&self, val: f64, order: Ordering) -> f64

Adds to the current value, returning the previous value.

This operation wraps around on overflow.

fetch_add takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn fetch_sub(&self, val: f64, order: Ordering) -> f64

Subtracts from the current value, returning the previous value.

This operation wraps around on overflow.

fetch_sub takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F ) -> Result<f64, f64>where F: FnMut(f64) -> Option<f64>,

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

fetch_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Panics

Panics if fetch_order is Release, AcqRel.

Considerations

This method is not magic; it is not provided by the hardware. It is implemented in terms of compare_exchange_weak, and suffers from the same drawbacks. In particular, this method will not circumvent the ABA Problem.

source

pub fn fetch_max(&self, val: f64, order: Ordering) -> f64

Maximum with the current value.

Finds the maximum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_max takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn fetch_min(&self, val: f64, order: Ordering) -> f64

Minimum with the current value.

Finds the minimum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_min takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn fetch_neg(&self, order: Ordering) -> f64

Negates the current value, and sets the new value to the result.

Returns the previous value.

fetch_neg takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn fetch_abs(&self, order: Ordering) -> f64

Computes the absolute value of the current value, and sets the new value to the result.

Returns the previous value.

fetch_abs takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

source

pub fn as_bits(&self) -> &AtomicU64

Raw transmutation to AtomicU64.

See f64::from_bits for some discussion of the portability of this operation (there are almost no issues).

Trait Implementations§

source§

impl Debug for AtomicF64

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for AtomicF64

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'de> Deserialize<'de> for AtomicF64

Available on crate feature serde only.
source§

fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl From<f64> for AtomicF64

source§

fn from(v: f64) -> Self

Converts to this type from the input type.
source§

impl Serialize for AtomicF64

Available on crate feature serde only.
source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>where S: Serializer,

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,