waffle/ir/func.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
use super::{Block, FunctionBodyDisplay, Local, Module, Signature, Type, Value, ValueDef};
use crate::backend::WasmFuncBackend;
use crate::cfg::CFGInfo;
use crate::entity::{EntityRef, EntityVec, PerEntity};
use crate::frontend::parse_body;
use crate::ir::SourceLoc;
use crate::passes::basic_opt::OptOptions;
use crate::pool::{ListPool, ListRef};
use crate::{Func, Operator, Table};
use anyhow::Result;
use either::Either;
use fxhash::FxHashMap;
use ssa_traits::{Term, Val};
use std::collections::HashSet;
use std::iter::{empty, once};
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
///
/// `FuncDecl` represents the various forms in which we can hold a
/// function body: not yet parsed, parsed into full IR, recompiled
/// into new bytecode, or an import (none of the above).
pub enum FuncDecl<'a> {
/// An imported function.
Import(Signature, String),
/// An un-expanded body that can be lazily expanded if needed.
#[serde(skip)]
Lazy(Signature, String, wasmparser::FunctionBody<'a>),
/// A modified or new function body that requires compilation.
Body(Signature, String, FunctionBody),
/// A compiled function body (was IR, has been collapsed back to bytecode).
Compiled(Signature, String, Vec<u8>),
/// A placeholder.
#[default]
None,
}
impl<'a> FuncDecl<'a> {
/// Get the signature for this function.
pub fn sig(&self) -> Signature {
match self {
FuncDecl::Import(sig, ..) => *sig,
FuncDecl::Lazy(sig, ..) => *sig,
FuncDecl::Body(sig, ..) => *sig,
FuncDecl::Compiled(sig, ..) => *sig,
FuncDecl::None => panic!("No signature for FuncDecl::None"),
}
}
/// If this function is not yet parsed to IR, do so, mutating in
/// place.
pub fn parse(&mut self, module: &Module) -> Result<()> {
match self {
FuncDecl::Lazy(sig, name, body) => {
let body = parse_body(module, *sig, body)?;
*self = FuncDecl::Body(*sig, name.clone(), body);
Ok(())
}
_ => Ok(()),
}
}
/// Run the specified optimization passes on the function.
pub fn optimize(&mut self, opts: &OptOptions) {
match self {
FuncDecl::Body(_, _, body) => {
body.optimize(opts);
}
_ => {}
}
}
/// Convert the function to "maximal SSA" with respect to the
/// given cut-set of blocks, or all blocks if `None`.
///
/// After this returns, the function will have no live values
/// across the entries to cut-blocks except for the blockparams of
/// those blocks. This eases some control-flow mutations: if
/// control flow will be reconnected somehow at certain points in
/// the CFG, making those points (the blocks that receive new
/// predecessor edges) cut-blocks in a max-SSA transform
/// beforehand will ensure that simply connecting blockparams
/// appropriately will reconnect all SSA.
pub fn convert_to_max_ssa(&mut self, cut_blocks: Option<HashSet<Block>>) {
match self {
FuncDecl::Body(_, _, body) => {
body.convert_to_max_ssa(cut_blocks);
}
_ => {}
}
}
/// Return the function body, if it exists.
pub fn body(&self) -> Option<&FunctionBody> {
match self {
FuncDecl::Body(_, _, body) => Some(body),
_ => None,
}
}
/// Return the function body, if it exists, in mutable form.
pub fn body_mut(&mut self) -> Option<&mut FunctionBody> {
match self {
FuncDecl::Body(_, _, body) => Some(body),
_ => None,
}
}
/// Return the name of this function.
pub fn name(&self) -> &str {
match self {
FuncDecl::Body(_, name, _)
| FuncDecl::Lazy(_, name, _)
| FuncDecl::Import(_, name)
| FuncDecl::Compiled(_, name, _) => &name[..],
FuncDecl::None => panic!("No name for FuncDecl::None"),
}
}
/// Set the name of this function.
pub fn set_name(&mut self, new_name: &str) {
match self {
FuncDecl::Body(_, name, _)
| FuncDecl::Lazy(_, name, _)
| FuncDecl::Import(_, name)
| FuncDecl::Compiled(_, name, _) => *name = new_name.to_owned(),
FuncDecl::None => panic!("No name for FuncDecl::None"),
}
}
/// Remove any references to a function's original bytes. This
/// exists to assist `Module::without_orig_bytes()`, which will
/// parse all `Lazy` `FuncDecl`s beforehand; here we just panic in
/// that case, and rewrite the lifetime otherwise (because no
/// borrow actually exists in the remaining variants).
pub(crate) fn without_orig_bytes(self) -> FuncDecl<'static> {
match self {
FuncDecl::Body(sig, name, body) => FuncDecl::Body(sig, name, body),
FuncDecl::Import(sig, name) => FuncDecl::Import(sig, name),
FuncDecl::Compiled(sig, name, func) => FuncDecl::Compiled(sig, name, func),
FuncDecl::None => FuncDecl::None,
FuncDecl::Lazy(..) => panic!("Trying to strip lifetime from lazy decl"),
}
}
}
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
/// The body of a function, as an SSA-based intermediate
/// representation.
pub struct FunctionBody {
/// How many parameters the function has. (Their types are the
/// first `n_params` values in `locals`.)
pub n_params: usize,
/// Return types of the function.
pub rets: Vec<Type>,
/// Local types, *including* args.
pub locals: EntityVec<Local, Type>,
/// Entry block.
pub entry: Block,
/// Block bodies.
pub blocks: EntityVec<Block, BlockDef>,
/// Value definitions, indexed by `Value`.
pub values: EntityVec<Value, ValueDef>,
/// Pool of types for ValueDefs' result type lists.
pub type_pool: ListPool<Type>,
/// Deduplication for type-lists of single types.
pub single_type_dedup: FxHashMap<Type, ListRef<Type>>,
/// Pool of values for ValueDefs' arg lists.
pub arg_pool: ListPool<Value>,
/// Blocks in which values are computed. Each may be `Block::invalid()` if not placed.
pub value_blocks: PerEntity<Value, Block>,
/// Wasm locals that values correspond to, if any.
pub value_locals: PerEntity<Value, Option<Local>>,
/// Debug source locations of each value.
pub source_locs: PerEntity<Value, SourceLoc>,
}
impl FunctionBody {
/// Create a new function body with the given signature. The body
/// will have an entry block with blockparams defined that match
/// the function parameters in the signature, but no
/// contents. `module` is necessary to look up the signature.
pub fn new(module: &Module, sig: Signature) -> FunctionBody {
let locals = EntityVec::from(module.signatures[sig].params.clone());
let n_params = locals.len();
let rets = module.signatures[sig].returns.clone();
let mut blocks = EntityVec::default();
let entry = blocks.push(BlockDef::default());
let mut values = EntityVec::default();
let mut value_blocks = PerEntity::default();
for (i, &arg_ty) in locals.values().enumerate() {
let value = values.push(ValueDef::BlockParam(entry, i as u32, arg_ty));
blocks[entry].params.push((arg_ty, value));
value_blocks[value] = entry;
}
FunctionBody {
n_params,
rets,
locals,
entry,
blocks,
values,
type_pool: ListPool::default(),
arg_pool: ListPool::default(),
single_type_dedup: FxHashMap::default(),
value_blocks,
value_locals: PerEntity::default(),
source_locs: PerEntity::default(),
}
}
/// Optimize this function given the options in `opts`.
pub fn optimize(&mut self, opts: &OptOptions) {
let cfg = crate::cfg::CFGInfo::new(self);
crate::passes::basic_opt::basic_opt(self, &cfg, opts);
crate::passes::empty_blocks::run(self);
}
/// Perform a maximal-SSA transform on this function. See comments
/// on `FuncDecl::convert_to_max_ssa()` for more.
pub fn convert_to_max_ssa(&mut self, cut_blocks: Option<HashSet<Block>>) {
let cfg = crate::cfg::CFGInfo::new(self);
crate::passes::maxssa::run(self, cut_blocks, &cfg);
}
/// Add a new, empty block and return its ID.
pub fn add_block(&mut self) -> Block {
let id = self.blocks.push(BlockDef::default());
log::trace!("add_block: block {}", id);
id
}
/// Convenience: intern a single type as a
/// result-type-list. Caches and deduplicates to minimize
/// type-pool growth.
pub fn single_type_list(&mut self, ty: Type) -> ListRef<Type> {
let type_pool = &mut self.type_pool;
*self
.single_type_dedup
.entry(ty)
.or_insert_with(|| type_pool.single(ty))
}
/// Add an edge in the succs/preds lists of the respective
/// blocks. These edges must exist once a function has been built;
/// they can be (re)computed in bulk with
/// `FunctionBody::recompute_edges()` if necessary.
pub fn add_edge(&mut self, from: Block, to: Block) {
let succ_pos = self.blocks[from].succs.len();
let pred_pos = self.blocks[to].preds.len();
self.blocks[from].succs.push(to);
self.blocks[to].preds.push(from);
self.blocks[from].pos_in_succ_pred.push(pred_pos);
self.blocks[to].pos_in_pred_succ.push(succ_pos);
log::trace!("add_edge: from {} to {}", from, to);
}
/// Split a given edge (disambiguated with `succ_idx` since there
/// may be multiple edges from `from` to `to`), creating an
/// intermediate block with an unconditional branch and carrying
/// through all blockparams.
pub fn split_edge(&mut self, from: Block, to: Block, succ_idx: usize) -> Block {
assert_eq!(self.blocks[from].succs[succ_idx], to);
let pred_idx = self.blocks[from].pos_in_succ_pred[succ_idx];
assert_eq!(self.blocks[to].preds[pred_idx], from);
// Create the block itself.
let edge_block = self.add_block();
// Add blockparams.
let mut blockparams = vec![];
for i in 0..self.blocks[to].params.len() {
let ty = self.blocks[to].params[i].0;
blockparams.push(self.add_blockparam(edge_block, ty));
}
// Create an unconditional-branch terminator in the edge block.
self.blocks[edge_block].terminator = Terminator::Br {
target: BlockTarget {
block: to,
args: blockparams,
},
};
// Update target of from-block.
self.blocks[from]
.terminator
.update_target(succ_idx, |target| target.block = edge_block);
// Fill in succ/pred links on edge block.
self.blocks[edge_block].succs.push(to);
self.blocks[edge_block].pos_in_succ_pred.push(pred_idx);
self.blocks[edge_block].preds.push(from);
self.blocks[edge_block].pos_in_pred_succ.push(succ_idx);
// Update `succs` in `from`, `preds` in `to`.
self.blocks[from].succs[succ_idx] = edge_block;
self.blocks[from].pos_in_succ_pred[succ_idx] = 0;
self.blocks[to].preds[pred_idx] = edge_block;
self.blocks[to].pos_in_pred_succ[pred_idx] = 0;
edge_block
}
/// Recompute all successor/predecessor lists according to the
/// edges implied by terminator instructions. Must be updated
/// after building a function body or mutating its CFG and prior
/// to analyses.
pub fn recompute_edges(&mut self) {
for block in self.blocks.values_mut() {
block.preds.clear();
block.succs.clear();
block.pos_in_succ_pred.clear();
block.pos_in_pred_succ.clear();
}
for block in 0..self.blocks.len() {
let block = Block::new(block);
let terminator = self.blocks[block].terminator.clone();
terminator.visit_successors(|succ| {
self.add_edge(block, succ);
});
}
}
/// Add a new value node to the function (not yet in any block)
/// and return its SSA value number.
pub fn add_value(&mut self, value: ValueDef) -> Value {
log::trace!("add_value: def {:?}", value);
let value = self.values.push(value);
log::trace!(" -> {}", value);
value
}
/// Convenience method: add an operator value to the function in
/// the given block. Creates the argument and type list(s), adds
/// the value node, and appends the value node to the given block.
pub fn add_op(&mut self, block: Block, op: Operator, args: &[Value], tys: &[Type]) -> Value {
let args = match args.len() {
0 => ListRef::default(),
_ => self.arg_pool.from_iter(args.iter().cloned()),
};
let tys = match tys.len() {
0 => ListRef::default(),
1 => self.single_type_list(tys[0]),
_ => self.type_pool.from_iter(tys.iter().cloned()),
};
let value = self.add_value(ValueDef::Operator(op, args, tys));
self.append_to_block(block, value);
value
}
/// Make one value an alias to another. Panics on cycles.
pub fn set_alias(&mut self, value: Value, to: Value) {
log::trace!("set_alias: value {:?} to {:?}", value, to);
// Resolve the `to` value through all existing aliases.
let to = self.resolve_and_update_alias(to);
// Disallow cycles.
if to == value {
panic!("Cannot create an alias cycle");
}
self.values[value] = ValueDef::Alias(to);
}
/// Resolve the value through any alias references to the original
/// value.
pub fn resolve_alias(&self, value: Value) -> Value {
if value.is_invalid() {
return value;
}
let mut result = value;
loop {
if let &ValueDef::Alias(to) = &self.values[result] {
result = to;
} else {
break;
}
}
result
}
/// Resolve a value through alias references, updating the value
/// definition to short-circuit the (arbitrarily long) alias chain
/// afterward.
pub fn resolve_and_update_alias(&mut self, value: Value) -> Value {
let to = self.resolve_alias(value);
// Short-circuit the chain, union-find-style.
if let &ValueDef::Alias(orig_to) = &self.values[value] {
if orig_to != to {
self.values[value] = ValueDef::Alias(to);
}
}
to
}
/// Add a new blockparam to the given block, returning its SSA
/// value number.
pub fn add_blockparam(&mut self, block: Block, ty: Type) -> Value {
let index = self.blocks[block].params.len();
let value = self.add_value(ValueDef::BlockParam(block, index as u32, ty));
self.blocks[block].params.push((ty, value));
self.value_blocks[value] = block;
value
}
/// Add a new `Placeholder` value that can be replaced with an
/// actual definition later. Useful in some algorithms that
/// follow or resolve cycles.
pub fn add_placeholder(&mut self, ty: Type) -> Value {
self.add_value(ValueDef::Placeholder(ty))
}
/// Convert a `Placeholder` value into a blockparam on the given
/// block.
pub fn replace_placeholder_with_blockparam(&mut self, block: Block, value: Value) {
let index = self.blocks[block].params.len();
let ty = match &self.values[value] {
&ValueDef::Placeholder(ty) => ty,
_ => unreachable!(),
};
self.blocks[block].params.push((ty, value));
self.values[value] = ValueDef::BlockParam(block, index as u32, ty);
}
/// Mark an SSA value as carrying the Wasm local `local`. This is
/// useful for debugging and manually reading the IR.
pub fn mark_value_as_local(&mut self, value: Value, local: Local) {
self.value_locals[value] = Some(local);
}
/// Append a value to the instruction list in a block.
pub fn append_to_block(&mut self, block: Block, value: Value) {
self.blocks[block].insts.push(value);
self.value_blocks[value] = block;
}
/// Set the terminator instruction on a block, updating the edge
/// lists as well.
pub fn set_terminator(&mut self, block: Block, terminator: Terminator) {
debug_assert_eq!(&self.blocks[block].terminator, &Terminator::None);
log::trace!("block {} terminator {:?}", block, terminator);
terminator.visit_successors(|succ| {
self.add_edge(block, succ);
});
self.blocks[block].terminator = terminator;
}
/// Prety-print this function body. `indent` is prepended to each
/// line of output. `module`, if provided, allows printing source
/// locations as comments at each operator.
pub fn display<'a>(
&'a self,
indent: &'a str,
module: Option<&'a Module>,
) -> FunctionBodyDisplay<'a> {
FunctionBodyDisplay {
body: self,
indent,
verbose: false,
module,
}
}
/// Pretty-print this function body, with "verbose" format:
/// includes all value nodes, even those not listed in a block's
/// instruction list. (Roughly doubles output size.)
pub fn display_verbose<'a>(
&'a self,
indent: &'a str,
module: Option<&'a Module>,
) -> FunctionBodyDisplay<'a> {
FunctionBodyDisplay {
body: self,
indent,
verbose: true,
module,
}
}
/// Validate consistency of the IR against required invariants and properties:
///
/// - Block successor and predecessor lists are accurate with
/// respect to terminator instructions.
/// - SSA is valid: values are used in locations dominated by
/// their uses.
pub fn validate(&self) -> anyhow::Result<()> {
// Verify that every block's succs are accurate.
for (block, block_def) in self.blocks.entries() {
let mut actual_succs = vec![];
block_def
.terminator
.visit_successors(|succ| actual_succs.push(succ));
if &actual_succs[..] != &block_def.succs[..] {
anyhow::bail!(
"Incorrect successors on {}: actual {:?}, stored {:?}",
block,
actual_succs,
block_def.succs
);
}
}
// Compute the location where every value is defined.
let mut block_inst: PerEntity<Value, Option<(Block, Option<usize>)>> = PerEntity::default();
for (block, block_def) in self.blocks.entries() {
for &(_, param) in &block_def.params {
block_inst[param] = Some((block, None));
}
for (i, &inst) in block_def.insts.iter().enumerate() {
block_inst[inst] = Some((block, Some(i)));
}
}
// Verify that every instruction uses args at legal locations
// (same block but earlier, or a dominating block).
let cfg = CFGInfo::new(self);
let mut bad = vec![];
for (block, block_def) in self.blocks.entries() {
// If block isn't reachable, skip it.
if cfg.rpo_pos[block].is_none() {
continue;
}
let mut visit_use = |u: Value, i: Option<usize>, inst: Option<Value>| {
let u = self.resolve_alias(u);
if block_inst[u].is_none() {
bad.push(format!(
"Use of arg {} at {:?} in {} illegal: not defined",
u, inst, block
));
return;
}
let (def_block, def_idx) = block_inst[u].unwrap();
if def_block == block {
if def_idx >= i {
bad.push(format!(
"Use of arg {} by {:?} does not dominate location",
u, inst
));
}
} else {
if !cfg.dominates(def_block, block) {
bad.push(format!(
"Use of arg {} defined in {} by {:?} in {}: def does not dominate",
u, def_block, inst, block
));
}
}
};
for (i, &inst) in block_def.insts.iter().enumerate() {
match &self.values[inst] {
&ValueDef::Operator(_, args, _) => {
for &arg in &self.arg_pool[args] {
visit_use(arg, Some(i), Some(inst));
}
}
&ValueDef::PickOutput(val, _, _) => {
visit_use(val, Some(i), Some(inst));
}
_ => {}
}
}
let terminator_idx = block_def.insts.len();
block_def.terminator.visit_uses(|u| {
visit_use(u, Some(terminator_idx), None);
});
}
if bad.len() > 0 {
anyhow::bail!(
"Body is:\n{}\nError(s) in SSA: {:?}",
self.display_verbose(" | ", None),
bad
);
}
Ok(())
}
/// Verify that the CFG of this function is reducible. (This is
/// not necessary to produce Wasm, as the backend can turn
/// irreducible control flow into reducible control flow via the
/// Reducifier. However, it is a useful property in other
/// situations, so one may want to test for or verify it.)
pub fn verify_reducible(&self) -> Result<()> {
let cfg = CFGInfo::new(self);
for (rpo, &block) in cfg.rpo.entries() {
for &succ in &self.blocks[block].succs {
let succ_rpo = cfg.rpo_pos[succ].unwrap();
if succ_rpo.index() <= rpo.index() && !cfg.dominates(succ, block) {
anyhow::bail!(
"Irreducible edge from {} ({}) to {} ({})",
block,
rpo,
succ,
succ_rpo
);
}
}
}
Ok(())
}
/// Compile this function to Wasm bytecode. See
/// `Module::to_wasm_bytes()` for the Wasm-level compilation entry
/// point. This is mostly useful for custom per-function
/// compilation flows, e.g. per-function caching.
pub fn compile(&self) -> Result<wasm_encoder::Function> {
WasmFuncBackend::compile(self)
}
}
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
pub struct BlockDef {
/// Instructions in this block.
pub insts: Vec<Value>,
/// Terminator: branch or return.
pub terminator: Terminator,
/// Successor blocks.
pub succs: Vec<Block>,
/// For each successor block, our index in its `preds` array.
pub pos_in_succ_pred: Vec<usize>,
/// Predecessor blocks.
pub preds: Vec<Block>,
/// For each predecessor block, our index in its `succs` array.
pub pos_in_pred_succ: Vec<usize>,
/// Type and Value for each blockparam.
pub params: Vec<(Type, Value)>,
/// Descriptive name for the block, if any.
pub desc: String,
}
#[derive(Clone, Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct BlockTarget {
pub block: Block,
pub args: Vec<Value>,
}
impl std::fmt::Display for BlockTarget {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let args = self
.args
.iter()
.map(|arg| format!("{}", arg))
.collect::<Vec<_>>();
write!(f, "{}({})", self.block, args.join(", "))
}
}
#[derive(Clone, Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum Terminator {
Br {
target: BlockTarget,
},
CondBr {
cond: Value,
if_true: BlockTarget,
if_false: BlockTarget,
},
Select {
value: Value,
targets: Vec<BlockTarget>,
default: BlockTarget,
},
Return {
values: Vec<Value>,
},
ReturnCall {
func: Func,
args: Vec<Value>,
},
ReturnCallIndirect {
sig: Signature,
table: Table,
args: Vec<Value>,
},
ReturnCallRef {
sig: Signature,
args: Vec<Value>,
},
Unreachable,
None,
}
impl std::default::Default for Terminator {
fn default() -> Self {
Terminator::None
}
}
impl std::fmt::Display for Terminator {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Terminator::None => write!(f, "no_terminator")?,
Terminator::Br { target } => write!(f, "br {}", target)?,
Terminator::CondBr {
cond,
if_true,
if_false,
} => write!(f, "if {}, {}, {}", cond, if_true, if_false)?,
Terminator::Select {
value,
targets,
default,
} => write!(
f,
"select {}, [{}], {}",
value,
targets
.iter()
.map(|target| format!("{}", target))
.collect::<Vec<_>>()
.join(", "),
default
)?,
Terminator::Return { values } => write!(
f,
"return {}",
values
.iter()
.map(|val| format!("{}", val))
.collect::<Vec<_>>()
.join(", ")
)?,
Terminator::Unreachable => write!(f, "unreachable")?,
Terminator::ReturnCall { func, args } => write!(
f,
"return_call {}({})",
func,
args.iter()
.map(|val| format!("{}", val))
.collect::<Vec<_>>()
.join(", ")
)?,
Terminator::ReturnCallIndirect { sig, table, args } => write!(
f,
"return_call_indirect ({};{})({})",
sig,
table,
args.iter()
.map(|val| format!("{}", val))
.collect::<Vec<_>>()
.join(", ")
)?,
Terminator::ReturnCallRef { sig, args } => write!(
f,
"return_call_ref ({})({})",
sig,
// table,
args.iter()
.map(|val| format!("{}", val))
.collect::<Vec<_>>()
.join(", ")
)?,
}
Ok(())
}
}
impl Terminator {
pub fn visit_targets<F: FnMut(&BlockTarget)>(&self, mut f: F) {
match self {
Terminator::Return { .. } => {}
Terminator::Br { ref target, .. } => f(target),
Terminator::CondBr {
ref if_true,
ref if_false,
..
} => {
f(if_true);
f(if_false);
}
Terminator::Select {
ref targets,
ref default,
..
} => {
f(default);
for target in targets {
f(target);
}
}
Terminator::None => {}
Terminator::Unreachable => {}
Terminator::ReturnCall { func, args } => {}
Terminator::ReturnCallIndirect { sig, table, args } => {}
Terminator::ReturnCallRef { sig, args } => {}
}
}
pub fn update_targets<F: FnMut(&mut BlockTarget)>(&mut self, mut f: F) {
match self {
Terminator::Return { .. } => {}
Terminator::Br { ref mut target, .. } => f(target),
Terminator::CondBr {
ref mut if_true,
ref mut if_false,
..
} => {
f(if_true);
f(if_false);
}
Terminator::Select {
ref mut targets,
ref mut default,
..
} => {
f(default);
for target in targets {
f(target);
}
}
Terminator::None => {}
Terminator::Unreachable => {}
Terminator::ReturnCall { func, args } => {}
Terminator::ReturnCallIndirect { sig, table, args } => {}
Terminator::ReturnCallRef { sig, args } => {}
}
}
pub fn visit_target<R, F: FnMut(&BlockTarget) -> R>(&self, index: usize, mut f: F) -> R {
match (index, self) {
(0, Terminator::Br { ref target, .. }) => f(target),
(0, Terminator::CondBr { ref if_true, .. }) => f(if_true),
(1, Terminator::CondBr { ref if_false, .. }) => f(if_false),
(0, Terminator::Select { ref default, .. }) => f(default),
(i, Terminator::Select { ref targets, .. }) if i <= targets.len() => f(&targets[i - 1]),
_ => panic!("out of bounds"),
}
}
pub fn update_target<F: FnMut(&mut BlockTarget)>(&mut self, index: usize, mut f: F) {
match (index, self) {
(0, Terminator::Br { ref mut target, .. }) => f(target),
(
0,
Terminator::CondBr {
ref mut if_true, ..
},
) => {
f(if_true);
}
(
1,
Terminator::CondBr {
ref mut if_false, ..
},
) => {
f(if_false);
}
(
0,
Terminator::Select {
ref mut default, ..
},
) => {
f(default);
}
(
i,
Terminator::Select {
ref mut targets, ..
},
) if i <= targets.len() => {
f(&mut targets[i - 1]);
}
(i, this) => panic!("out of bounds: index {} term {:?}", i, this),
}
}
pub fn visit_successors<F: FnMut(Block)>(&self, mut f: F) {
self.visit_targets(|target| f(target.block));
}
pub fn visit_uses<F: FnMut(Value)>(&self, mut f: F) {
self.visit_targets(|target| {
for &arg in &target.args {
f(arg);
}
});
match self {
&Terminator::CondBr { cond, .. } => f(cond),
&Terminator::Select { value, .. } => f(value),
&Terminator::Return { ref values, .. } => {
for &value in values {
f(value);
}
}
&Terminator::ReturnCall { func, ref args } => {
for value in args {
f(*value);
}
}
&Terminator::ReturnCallIndirect {
sig,
table,
ref args,
} => {
for value in args {
f(*value);
}
}
_ => {}
}
}
pub fn update_uses<F: FnMut(&mut Value)>(&mut self, mut f: F) {
self.update_targets(|target| {
for arg in &mut target.args {
f(arg);
}
});
match self {
&mut Terminator::CondBr { ref mut cond, .. } => f(cond),
&mut Terminator::Select { ref mut value, .. } => f(value),
&mut Terminator::Return { ref mut values, .. } => {
for value in values {
f(value);
}
}
&mut Terminator::ReturnCall { func, ref mut args } => {
for value in args {
f(value);
}
}
&mut Terminator::ReturnCallIndirect {
sig,
table,
ref mut args,
} => {
for value in args {
f(value);
}
}
&mut Terminator::ReturnCallRef { sig, ref mut args } => {
for value in args {
f(value);
}
}
_ => {}
}
}
}