probe_rs/architecture/arm/core/armv6m.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
//! Register types and the core interface for armv6-M
use super::{registers::cortex_m::*, CortexMState, Dfsr};
use crate::{
architecture::arm::{memory::ArmMemoryInterface, sequences::ArmDebugSequence, ArmError},
core::{CoreRegisters, RegisterId, RegisterValue, VectorCatchCondition},
error::Error,
memory::{valid_32bit_address, CoreMemoryInterface},
Architecture, BreakpointCause, CoreInformation, CoreInterface, CoreRegister, CoreStatus,
CoreType, HaltReason, InstructionSet, MemoryInterface, MemoryMappedRegister,
};
use bitfield::bitfield;
use std::{
mem::size_of,
sync::Arc,
time::{Duration, Instant},
};
bitfield! {
/// Debug Halting Control and Status Register, DHCSR (see armv6-M Architecture Reference Manual C1.6.3)
///
/// To write this register successfully, you need to set the debug key via [`Dhcsr::enable_write`] first!
#[derive(Copy, Clone)]
pub struct Dhcsr(u32);
impl Debug;
/// Indicates whether the processor has been reset since the last read of DHCSR:
///
/// `0`: No reset since last DHCSR read.
/// `1`: At least one reset since last DHCSR read.
///
/// This is a sticky bit, that clears to `0` on a read of DHCSR.
pub s_reset_st, _: 25;
/// When not in Debug state, indicates whether the processor has completed
/// the execution of an instruction since the last read of DHCSR:
///
/// `0`: No instruction has completed since last DHCSR read.
/// `1`: At least one instructions has completed since last DHCSR read.
///
/// This is a sticky bit, that clears to `0` on a read of DHCSR.
///
/// This bit is UNKNOWN:
///
/// - after a Local reset, but is set to `1` as soon as the processor completes
/// execution of an instruction.
/// - when S_LOCKUP is set to 1.
/// - when S_HALT is set to 1.
///
/// When the processor is not in Debug state, a debugger can check this bit to
/// determine if the processor is stalled on a load, store or fetch access.
pub s_retire_st, _: 24;
/// Indicates whether the processor is locked up because of an unrecoverable exception:
///
/// `0`: Not locked up.\
/// `1`: Locked up.
///
/// See Unrecoverable exception cases on page B1-206 for more information.
///
/// This bit can only read as `1` when accessed by a remote debugger using the
/// DAP. The value of `1` indicates that the processor is running but locked up.
///
/// The bit clears to `0` when the processor enters Debug state.
pub s_lockup, _: 19;
/// Indicates whether the processor is sleeping:
///
/// `0`: Not sleeping.\
/// `1`: Sleeping.
///
/// The debugger must set the DHCSR.C_HALT bit to `1` to gain control, or
/// wait for an interrupt or other wakeup event to wakeup the system
pub s_sleep, _: 18;
/// Indicates whether the processor is in Debug state:
///
/// `0`: Not in Debug state.\
/// `1`: In Debug state.
pub s_halt, _: 17;
/// A handshake flag for transfers through the DCRDR:
///
/// - Writing to DCRSR clears the bit to `0`.
/// - Completion of the DCRDR transfer then sets the bit to `1`.
///
/// For more information about DCRDR transfers see Debug Core Register
/// Data Register, DCRDR on page C1-292.
///
/// `0`: There has been a write to the DCRDR, but the transfer is
/// not complete.\
/// `1`: The transfer to or from the DCRDR is complete.
///
/// This bit is only valid when the processor is in Debug state, otherwise the
/// bit is UNKNOWN.
pub s_regrdy, _: 16;
/// When debug is enabled, the debugger can write to this bit to mask
/// PendSV, SysTick and external configurable interrupts:
///
/// `0`: Do not mask.\
/// `1`: Mask PendSV, SysTick and external configurable interrupts.
///
/// The effect of any attempt to change the value of this bit is UNPREDICTABLE
/// unless both:
///
/// - before the write to DHCSR, the value of the C_HALT bit is 1.
/// - the write to the DHCSR that changes the C_MASKINTS bit also
/// writes `1` to the C_HALT bit.
///
/// This means that a single write to DHCSR cannot set the C_HALT to `0` and
/// change the value of the C_MASKINTS bit.
///
/// The bit does not affect NMI. When DHCSR.C_DEBUGEN is set to `0`, the
/// value of this bit is UNKNOWN.
///
/// For more information about the use of this bit see Table C1-9 on page C1-282.
///
/// This bit is UNKNOWN after a power-on reset.
pub c_maskints, set_c_maskints: 3;
/// Processor step bit. The effects of writes to this bit are:
///
/// `0`: Single-stepping disabled.\
/// `1`: Single-stepping enabled.
///
/// For more information about the use of this bit see Table C1-9 on
/// page C1-282.
///
/// This bit is UNKNOWN after a power-on reset.
pub c_step, set_c_step: 2;
/// Processor halt bit. The effects of writes to this bit are:
///
/// `0`: Request a halted processor to run.\
/// `1`: Request a running processor to halt.
///
/// Table C1-9 on page C1-282 shows the effect of writes to this bit when the
/// processor is in Debug state.
///
/// This bit is `0` after a System reset.
pub c_halt, set_c_halt: 1;
/// Halting debug enable bit:
///
/// `0`: Halting debug disabled.\
/// `1`: Halting debug enabled.
///
/// If a debugger writes to DHCSR to change the value of this bit from `0` to
/// 1, it must also write `0` to the C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.
///
/// This bit can only be written from the DAP. Access to the DHCSR from
/// software running on the processor is IMPLEMENTATION DEFINED.
/// However, writes to this bit from software running on the processor are ignored.
///
/// This bit is `0` after a power-on reset.
pub c_debugen, set_c_debugen: 0;
}
impl Dhcsr {
/// This function sets the bit to enable writes to this register.
pub fn enable_write(&mut self) {
self.0 &= !(0xffff << 16);
self.0 |= 0xa05f << 16;
}
}
impl From<u32> for Dhcsr {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<Dhcsr> for u32 {
fn from(value: Dhcsr) -> Self {
value.0
}
}
impl MemoryMappedRegister<u32> for Dhcsr {
const ADDRESS_OFFSET: u64 = 0xE000_EDF0;
const NAME: &'static str = "DHCSR";
}
/// Debug Core Register Data Register, DCRDR (see armv6-M Architecture Reference Manual C1.6.5)
#[derive(Debug, Copy, Clone)]
pub struct Dcrdr(u32);
impl From<u32> for Dcrdr {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<Dcrdr> for u32 {
fn from(value: Dcrdr) -> Self {
value.0
}
}
impl MemoryMappedRegister<u32> for Dcrdr {
const ADDRESS_OFFSET: u64 = 0xE000_EDF8;
const NAME: &'static str = "DCRDR";
}
bitfield! {
/// Breakpoint Control register, BP_CTRL (see armv6-M Architecture Reference Manual C1.8.2)
///
/// Provides BPU implementation information, and the global enable for the BPU.
#[derive(Copy, Clone)]
pub struct BpCtrl(u32);
impl Debug;
/// The number of breakpoint comparators. If NUM_CODE is zero, the implementation does not support any comparators
pub num_code, _: 7, 4;
/// RAZ on reads, SBO, for writes. If written as zero, the write to the register is ignored.
pub key, set_key: 1;
/// Enables the BPU:
///
/// `0`: BPU is disabled.\
/// `1`: BPU is enabled.
///
/// This bit is set to `0` on a power-on reset
pub _, set_enable: 0;
}
impl From<u32> for BpCtrl {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<BpCtrl> for u32 {
fn from(value: BpCtrl) -> Self {
value.0
}
}
impl MemoryMappedRegister<u32> for BpCtrl {
const ADDRESS_OFFSET: u64 = 0xE000_2000;
const NAME: &'static str = "BP_CTRL";
}
bitfield! {
/// Breakpoint Comparator registers, BP_COMPx (see armv6-M Architecture Reference Manual C1.8.2)
///
/// Holds a breakpoint address for comparison with instruction addresses in the Code memory
/// region, see The system address map on page B3-224 for more information.
#[derive(Copy, Clone)]
pub struct BpCompx(u32);
impl Debug;
/// BP_MATCH defines the behavior when the COMP address is matched:
///
/// - `00` no breakpoint matching.
/// - `01` breakpoint on lower halfword, upper is unaffected.
/// - `10` breakpoint on upper halfword, lower is unaffected.
/// - `11` breakpoint on both lower and upper halfwords.
/// - The field is UNKNOWN on reset.
pub bp_match, set_bp_match: 31,30;
/// Stores bits [28:2] of the comparison address. The comparison address is
/// compared with the address from the Code memory region. Bits [31:29] and
/// [1:0] of the comparison address are zero.
///
/// The field is UNKNOWN on power-on reset.
pub comp, set_comp: 28,2;
/// Enables the comparator:
///
/// `0`: comparator is disabled.\
/// `1`: comparator is enabled.
///
/// This bit is set to `0` on a power-on reset.
pub enable, set_enable: 0;
}
impl From<u32> for BpCompx {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<BpCompx> for u32 {
fn from(value: BpCompx) -> Self {
value.0
}
}
impl MemoryMappedRegister<u32> for BpCompx {
const ADDRESS_OFFSET: u64 = 0xE000_2008;
const NAME: &'static str = "BP_CTRL0";
}
impl BpCompx {
/// Get the correct comparator value stored at the given address.
///
/// This will adjust the [`BpCompx::comp`] result based on the `BpCompx.bp_match()` specification
///
/// NOTE: Does not support a bp_match value of `11`
fn get_breakpoint_comparator(register_value: u32) -> Result<u32, Error> {
let bp_val = BpCompx::from(register_value);
if bp_val.bp_match() == 0b01 {
Ok(bp_val.comp() << 2)
} else if bp_val.bp_match() == 0b10 {
Ok((bp_val.comp() << 2) | 0x2)
} else {
Err(Error::Arm(ArmError::Other(format!("Unsupported breakpoint comparator value {:#08x} for HW breakpoint. Breakpoint must be on half-word boundaries", bp_val.0) )))
}
}
}
bitfield! {
/// Application Interrupt and Reset Control Register, AIRCR (see armv6-M Architecture Reference Manual B3.2.6)
///
/// [`Aircr::vectkey`] must be called before this register can effectively be written!
#[derive(Copy, Clone)]
pub struct Aircr(u32);
impl Debug;
/// Vector Key. The value 0x05FA must be written to this register, otherwise
/// the register write is UNPREDICTABLE.
get_vectkeystat, set_vectkey: 31,16;
/// Indicates the memory system data endianness:
///
/// `0`: little endian.\
/// `1`: big endian.
///
/// See Endian support on page A3-44 for more information.
pub endianness, set_endianness: 15;
/// System Reset Request:
///
/// `0`: do not request a reset.\
/// `1`: request reset.
///
/// Writing `1` to this bit asserts a signal to request a reset by the external
/// system. The system components that are reset by this request are
/// IMPLEMENTATION DEFINED. A Local reset is required as part of a system
/// reset request.
///
/// A Local reset clears this bit to `0`.
///
/// See Reset management on page B1-208 for more information
pub sysresetreq, set_sysresetreq: 2;
/// Clears all active state information for fixed and configurable exceptions:
///
/// `0`: do not clear state information.\
/// `1`: clear state information.
///
/// The effect of writing a `1` to this bit if the processor is not halted in Debug
/// state is UNPREDICTABLE.
pub vectclractive, set_vectclractive: 1;
}
impl From<u32> for Aircr {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<Aircr> for u32 {
fn from(value: Aircr) -> Self {
value.0
}
}
impl Aircr {
/// Must be called before writing the register.
pub fn vectkey(&mut self) {
self.set_vectkey(0x05FA);
}
/// Verifies that the vector key is correct (see [`Aircr::vectkey`])
pub fn vectkeystat(&self) -> bool {
self.get_vectkeystat() == 0xFA05
}
}
impl MemoryMappedRegister<u32> for Aircr {
const ADDRESS_OFFSET: u64 = 0xE000_ED0C;
const NAME: &'static str = "AIRCR";
}
bitfield! {
/// Debug Exception and Monitor Control Register, DEMCR (see armv6-M Architecture Reference Manual C1.6.6)
#[derive(Copy, Clone)]
pub struct Demcr(u32);
impl Debug;
/// Global enable for DWT.
///
/// Enables:
/// - Data Watchpoint and Trace (DWT)
/// - Instrumentation Trace Macrocell (ITM)
/// - Embedded Trace Macrocell (ETM)
/// - Trace Port Interface Unit (TPIU).
pub dwtena, set_dwtena: 24;
/// Enable halting debug trap on a HardFault exception
pub vc_harderr, set_vc_harderr: 10;
/// Enable Reset Vector Catch
pub vc_corereset, set_vc_corereset: 0;
}
impl From<u32> for Demcr {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<Demcr> for u32 {
fn from(value: Demcr) -> Self {
value.0
}
}
impl MemoryMappedRegister<u32> for Demcr {
const ADDRESS_OFFSET: u64 = 0xe000_edfc;
const NAME: &'static str = "DEMCR";
}
/// The state of a core that can be used to persist core state across calls to multiple different cores.
pub(crate) struct Armv6m<'probe> {
memory: Box<dyn ArmMemoryInterface + 'probe>,
state: &'probe mut CortexMState,
sequence: Arc<dyn ArmDebugSequence>,
}
impl<'probe> Armv6m<'probe> {
pub(crate) fn new(
mut memory: Box<dyn ArmMemoryInterface + 'probe>,
state: &'probe mut CortexMState,
sequence: Arc<dyn ArmDebugSequence>,
) -> Result<Self, ArmError> {
if !state.initialized() {
// determine current state
let dhcsr = Dhcsr(memory.read_word_32(Dhcsr::get_mmio_address())?);
let core_state = if dhcsr.s_sleep() {
CoreStatus::Sleeping
} else if dhcsr.s_halt() {
let dfsr = Dfsr(memory.read_word_32(Dfsr::get_mmio_address())?);
let reason = dfsr.halt_reason();
tracing::debug!("Core was halted when connecting, reason: {:?}", reason);
CoreStatus::Halted(reason)
} else {
CoreStatus::Running
};
// Clear DFSR register. The bits in the register are sticky,
// so we clear them here to ensure that that none are set.
let dfsr_clear = Dfsr::clear_all();
memory.write_word_32(Dfsr::get_mmio_address(), dfsr_clear.into())?;
state.current_state = core_state;
state.initialize();
}
Ok(Self {
memory,
state,
sequence,
})
}
fn set_core_status(&mut self, new_status: CoreStatus) {
super::update_core_status(&mut self.memory, &mut self.state.current_state, new_status);
}
}
impl CoreInterface for Armv6m<'_> {
fn wait_for_core_halted(&mut self, timeout: Duration) -> Result<(), Error> {
// Wait until halted state is active again.
let start = Instant::now();
while !self.core_halted()? {
if start.elapsed() >= timeout {
return Err(Error::Arm(ArmError::Timeout));
}
// Wait a bit before polling again.
std::thread::sleep(Duration::from_millis(1));
}
Ok(())
}
fn core_halted(&mut self) -> Result<bool, Error> {
// Wait until halted state is active again.
//
// By calling the status function, the cached
// status is properly updated.
let status = self.status()?;
Ok(status.is_halted())
}
fn status(&mut self) -> Result<crate::core::CoreStatus, Error> {
let dhcsr = Dhcsr(self.memory.read_word_32(Dhcsr::get_mmio_address())?);
if dhcsr.s_lockup() {
tracing::warn!(
"The core is in locked up status as a result of an unrecoverable exception"
);
self.set_core_status(CoreStatus::LockedUp);
return Ok(CoreStatus::LockedUp);
}
if dhcsr.s_sleep() {
// Check if we assumed the core to be halted
if self.state.current_state.is_halted() {
tracing::warn!("Expected core to be halted, but core is running");
}
self.set_core_status(CoreStatus::Sleeping);
return Ok(CoreStatus::Sleeping);
}
// TODO: Handle lockup
if dhcsr.s_halt() {
let dfsr = Dfsr(self.memory.read_word_32(Dfsr::get_mmio_address())?);
let mut reason = dfsr.halt_reason();
// Clear bits from Dfsr register
self.memory
.write_word_32(Dfsr::get_mmio_address(), Dfsr::clear_all().into())?;
// If the core was halted before, we cannot read the halt reason from the chip,
// because we clear it directly after reading.
if self.state.current_state.is_halted() {
// There shouldn't be any bits set, otherwise it means
// that the reason for the halt has changed. No bits set
// means that we have an unkown HaltReason.
if reason == HaltReason::Unknown {
tracing::debug!("Cached halt reason: {:?}", self.state.current_state);
return Ok(self.state.current_state);
}
tracing::debug!(
"Reason for halt has changed, old reason was {:?}, new reason is {:?}",
&self.state.current_state,
&reason
);
}
// Set the status so any semihosting operations will know we're halted
self.set_core_status(CoreStatus::Halted(reason));
if let HaltReason::Breakpoint(_) = reason {
self.state.semihosting_command = super::cortex_m::check_for_semihosting(
self.state.semihosting_command.take(),
self,
)?;
if let Some(command) = self.state.semihosting_command {
reason = HaltReason::Breakpoint(BreakpointCause::Semihosting(command));
}
// Set it again if it's changed
self.set_core_status(CoreStatus::Halted(reason));
}
return Ok(CoreStatus::Halted(reason));
}
// Core is neither halted nor sleeping, so we assume it is running.
if self.state.current_state.is_halted() {
tracing::warn!("Core is running, but we expected it to be halted");
}
self.set_core_status(CoreStatus::Running);
Ok(CoreStatus::Running)
}
fn halt(&mut self, timeout: Duration) -> Result<CoreInformation, Error> {
// TODO: Generic halt support
let mut value = Dhcsr(0);
value.set_c_halt(true);
value.set_c_debugen(true);
value.enable_write();
self.memory
.write_word_32(Dhcsr::get_mmio_address(), value.into())?;
self.wait_for_core_halted(timeout)?;
// try to read the program counter
let pc_value = self.read_core_reg(self.program_counter().into())?;
// get pc
Ok(CoreInformation {
pc: pc_value.try_into()?,
})
}
fn run(&mut self) -> Result<(), Error> {
// Before we run, we always perform a single instruction step, to account for possible breakpoints that might get us stuck on the current instruction.
self.step()?;
let mut value = Dhcsr(0);
value.set_c_halt(false);
value.set_c_debugen(true);
value.enable_write();
self.memory
.write_word_32(Dhcsr::get_mmio_address(), value.into())?;
self.memory.flush()?;
// We assume that the core is running now.
self.set_core_status(CoreStatus::Running);
Ok(())
}
fn reset(&mut self) -> Result<(), Error> {
self.state.semihosting_command = None;
self.sequence
.reset_system(&mut *self.memory, crate::CoreType::Armv6m, None)?;
Ok(())
}
fn reset_and_halt(&mut self, _timeout: Duration) -> Result<CoreInformation, Error> {
self.reset_catch_set()?;
self.sequence
.reset_system(&mut *self.memory, crate::CoreType::Armv6m, None)?;
// Update core status
let _ = self.status()?;
const XPSR_THUMB: u32 = 1 << 24;
let xpsr_value: u32 = self.read_core_reg(XPSR.id())?.try_into()?;
if xpsr_value & XPSR_THUMB == 0 {
self.write_core_reg(XPSR.id(), (xpsr_value | XPSR_THUMB).into())?;
}
self.reset_catch_clear()?;
// try to read the program counter
let pc_value = self.read_core_reg(self.program_counter().into())?;
// get pc
Ok(CoreInformation {
pc: pc_value.try_into()?,
})
}
fn step(&mut self) -> Result<CoreInformation, Error> {
// First check if we stopped on a breakpoint, because this requires special handling before we can continue.
let breakpoint_at_pc = if matches!(
self.state.current_state,
CoreStatus::Halted(HaltReason::Breakpoint(_))
) {
let pc_before_step = self.read_core_reg(self.program_counter().into())?;
self.enable_breakpoints(false)?;
Some(pc_before_step)
} else {
None
};
let mut value = Dhcsr(0);
// Leave halted state.
// Step one instruction.
value.set_c_step(true);
value.set_c_halt(false);
value.set_c_debugen(true);
value.set_c_maskints(true);
value.enable_write();
self.memory
.write_word_32(Dhcsr::get_mmio_address(), value.into())?;
self.memory.flush()?;
self.wait_for_core_halted(Duration::from_millis(100))?;
// Try to read the new program counter.
let mut pc_after_step = self.read_core_reg(self.program_counter().into())?;
// Re-enable breakpoints before we continue.
if let Some(pc_before_step) = breakpoint_at_pc {
// If we were stopped on a software breakpoint, then we need to manually advance the PC, or else we will be stuck here forever.
if pc_before_step == pc_after_step
&& !self
.hw_breakpoints()?
.contains(&pc_before_step.try_into().ok())
{
tracing::debug!("Encountered a breakpoint instruction @ {}. We need to manually advance the program counter to the next instruction.", pc_after_step);
// Advance the program counter by the architecture specific byte size of the BKPT instruction.
pc_after_step.increment_address(2)?;
self.write_core_reg(self.program_counter().into(), pc_after_step)?;
}
self.enable_breakpoints(true)?;
}
self.state.semihosting_command = None;
Ok(CoreInformation {
pc: pc_after_step.try_into()?,
})
}
fn read_core_reg(&mut self, address: RegisterId) -> Result<RegisterValue, Error> {
if self.state.current_state.is_halted() {
let val = super::cortex_m::read_core_reg(&mut *self.memory, address)?;
Ok(val.into())
} else {
Err(Error::Arm(ArmError::CoreNotHalted))
}
}
fn write_core_reg(&mut self, address: RegisterId, value: RegisterValue) -> Result<(), Error> {
if self.state.current_state.is_halted() {
super::cortex_m::write_core_reg(&mut *self.memory, address, value.try_into()?)?;
Ok(())
} else {
Err(Error::Arm(ArmError::CoreNotHalted))
}
}
fn available_breakpoint_units(&mut self) -> Result<u32, Error> {
let result = self.memory.read_word_32(BpCtrl::get_mmio_address())?;
let register = BpCtrl::from(result);
Ok(register.num_code())
}
/// See docs on the [`CoreInterface::hw_breakpoints`] trait
fn hw_breakpoints(&mut self) -> Result<Vec<Option<u64>>, Error> {
let mut breakpoints = vec![];
let num_hw_breakpoints = self.available_breakpoint_units()? as usize;
for bp_unit_index in 0..num_hw_breakpoints {
let reg_addr = BpCompx::get_mmio_address() + (bp_unit_index * size_of::<u32>()) as u64;
// The raw breakpoint address as read from memory
let register_value = self.memory.read_word_32(reg_addr)?;
if BpCompx::from(register_value).enable() {
let breakpoint = BpCompx::get_breakpoint_comparator(register_value)?;
breakpoints.push(Some(breakpoint as u64));
} else {
breakpoints.push(None);
}
}
Ok(breakpoints)
}
fn enable_breakpoints(&mut self, state: bool) -> Result<(), Error> {
tracing::debug!("Enabling breakpoints: {:?}", state);
let mut value = BpCtrl(0);
value.set_key(true);
value.set_enable(state);
self.memory
.write_word_32(BpCtrl::get_mmio_address(), value.into())?;
self.memory.flush()?;
self.state.hw_breakpoints_enabled = state;
Ok(())
}
fn set_hw_breakpoint(&mut self, bp_register_index: usize, addr: u64) -> Result<(), Error> {
let addr = valid_32bit_address(addr)?;
tracing::debug!("Setting breakpoint on address 0x{:08x}", addr);
// The highest 3 bits of the address have to be zero, otherwise the breakpoint cannot
// be set at the address.
if addr >= 0x2000_0000 {
return Err(Error::Arm(ArmError::Other(format!("Unsupported address {:#08x} for HW breakpoint. Breakpoint must be at address < 0x2000_0000.", addr))));
}
let mut value = BpCompx(0);
if addr % 4 < 2 {
// match lower halfword
value.set_bp_match(0b01);
} else {
// match higher halfword
value.set_bp_match(0b10);
}
value.set_comp((addr >> 2) & 0x07FF_FFFF);
value.set_enable(true);
let register_addr =
BpCompx::get_mmio_address() + (bp_register_index * size_of::<u32>()) as u64;
self.memory.write_word_32(register_addr, value.into())?;
Ok(())
}
fn clear_hw_breakpoint(&mut self, bp_unit_index: usize) -> Result<(), Error> {
let register_addr = BpCompx::get_mmio_address() + (bp_unit_index * size_of::<u32>()) as u64;
let mut value = BpCompx::from(0);
value.set_enable(false);
self.memory.write_word_32(register_addr, value.into())?;
Ok(())
}
fn registers(&self) -> &'static CoreRegisters {
&CORTEX_M_CORE_REGISTERS
}
fn program_counter(&self) -> &'static CoreRegister {
&PC
}
fn frame_pointer(&self) -> &'static CoreRegister {
&FP
}
fn stack_pointer(&self) -> &'static CoreRegister {
&SP
}
fn return_address(&self) -> &'static CoreRegister {
&RA
}
fn hw_breakpoints_enabled(&self) -> bool {
self.state.hw_breakpoints_enabled
}
fn architecture(&self) -> Architecture {
Architecture::Arm
}
fn core_type(&self) -> CoreType {
CoreType::Armv6m
}
fn instruction_set(&mut self) -> Result<InstructionSet, Error> {
Ok(InstructionSet::Thumb2)
}
fn fpu_support(&mut self) -> Result<bool, Error> {
Ok(false)
}
fn floating_point_register_count(&mut self) -> Result<usize, Error> {
Ok(0)
}
#[tracing::instrument(skip(self))]
fn reset_catch_set(&mut self) -> Result<(), Error> {
// Set the reset_catch bit.
self.sequence
.reset_catch_set(&mut *self.memory, CoreType::Armv6m, None)?;
Ok(())
}
#[tracing::instrument(skip(self))]
fn reset_catch_clear(&mut self) -> Result<(), Error> {
self.sequence
.reset_catch_clear(&mut *self.memory, CoreType::Armv6m, None)?;
Ok(())
}
#[tracing::instrument(skip(self))]
fn debug_core_stop(&mut self) -> Result<(), Error> {
self.sequence
.debug_core_stop(&mut *self.memory, CoreType::Armv6m)?;
Ok(())
}
#[tracing::instrument(skip(self))]
fn enable_vector_catch(&mut self, condition: VectorCatchCondition) -> Result<(), Error> {
let mut dhcsr = Dhcsr(self.memory.read_word_32(Dhcsr::get_mmio_address())?);
dhcsr.set_c_debugen(true);
self.memory
.write_word_32(Dhcsr::get_mmio_address(), dhcsr.into())?;
let mut demcr = Demcr(self.memory.read_word_32(Demcr::get_mmio_address())?);
match condition {
VectorCatchCondition::HardFault => demcr.set_vc_harderr(true),
VectorCatchCondition::CoreReset => demcr.set_vc_corereset(true),
VectorCatchCondition::SecureFault => {
return Err(Error::Arm(ArmError::ArchitectureRequired(&["ARMv8"])));
}
VectorCatchCondition::All => {
demcr.set_vc_harderr(true);
demcr.set_vc_corereset(true);
}
};
self.memory
.write_word_32(Demcr::get_mmio_address(), demcr.into())?;
Ok(())
}
fn disable_vector_catch(&mut self, condition: VectorCatchCondition) -> Result<(), Error> {
let mut demcr = Demcr(self.memory.read_word_32(Demcr::get_mmio_address())?);
match condition {
VectorCatchCondition::HardFault => demcr.set_vc_harderr(false),
VectorCatchCondition::CoreReset => demcr.set_vc_corereset(false),
VectorCatchCondition::SecureFault => {
return Err(Error::Arm(ArmError::ArchitectureRequired(&["ARMv8"])));
}
VectorCatchCondition::All => {
demcr.set_vc_harderr(false);
demcr.set_vc_corereset(false);
}
};
self.memory
.write_word_32(Demcr::get_mmio_address(), demcr.into())?;
Ok(())
}
}
impl CoreMemoryInterface for Armv6m<'_> {
type ErrorType = ArmError;
fn memory(&self) -> &dyn MemoryInterface<Self::ErrorType> {
self.memory.as_memory_interface()
}
fn memory_mut(&mut self) -> &mut dyn MemoryInterface<Self::ErrorType> {
self.memory.as_memory_interface_mut()
}
}