probe_rs/config/target.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
use super::{Core, MemoryRegion, RawFlashAlgorithm, TargetDescriptionSource};
use crate::flashing::FlashLoader;
use crate::{
architecture::{
arm::{
sequences::{ArmDebugSequence, DefaultArmSequence},
DpAddress, FullyQualifiedApAddress,
},
riscv::sequences::{DefaultRiscvSequence, RiscvDebugSequence},
xtensa::sequences::{DefaultXtensaSequence, XtensaDebugSequence},
},
rtt::ScanRegion,
};
use probe_rs_target::{
Architecture, Chip, ChipFamily, Jtag, MemoryAccess, MemoryRange as _, NvmRegion,
};
use std::sync::Arc;
/// This describes a complete target with a fixed chip model and variant.
#[derive(Clone)]
pub struct Target {
/// The name of the target.
pub name: String,
/// The cores of the target.
pub cores: Vec<Core>,
/// The name of the flash algorithm.
pub flash_algorithms: Vec<RawFlashAlgorithm>,
/// The memory map of the target.
pub memory_map: Vec<MemoryRegion>,
/// Source of the target description. Used for diagnostics.
pub(crate) source: TargetDescriptionSource,
/// Debug sequences for the given target.
pub debug_sequence: DebugSequence,
/// The regions of memory to scan to try to find an RTT header.
///
/// Each region must be enclosed in exactly one RAM region from
/// `memory_map`.
pub rtt_scan_regions: ScanRegion,
/// The Description of the scan chain
///
/// The scan chain can be parsed from the CMSIS-SDF file, or specified
/// manually in the target.yaml file. It is used by some probes to determine
/// the number devices in the scan chain and their ir lengths.
pub jtag: Option<Jtag>,
/// The default executable format for the target.
pub default_format: Option<String>,
}
impl std::fmt::Debug for Target {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Target {{
identifier: {:?},
flash_algorithms: {:?},
memory_map: {:?},
}}",
self.name, self.flash_algorithms, self.memory_map
)
}
}
impl Target {
/// Create a new target for the given details.
///
/// The given chip must be a member of the given family.
pub(super) fn new(family: &ChipFamily, chip: &Chip) -> Target {
let mut memory_map = chip.memory_map.clone();
let mut flash_algorithms = Vec::new();
for algo_name in chip.flash_algorithms.iter() {
let algo = family
.get_algorithm_for_chip(algo_name, chip)
.expect(
"The required flash algorithm was not found. This is a bug. Please report it.",
)
.clone();
// If the flash algorithm addresses a range that is not covered by any memory region,
// we add a new memory region for it. This is usually the case for option bytes and
// some OTP memory regions in certain CMSIS packs.
let algo_range = &algo.flash_properties.address_range;
if !memory_map
.iter()
.any(|region| region.address_range().intersects_range(algo_range))
{
// HACK (doubly, even):
// Conjure up a memory region for the flash algorithm. This is mostly used by
// EEPROM regions. We probably don't want to erase these regions, so we set
// `is_alias`, which then causes "erase all" to skip the region.
memory_map.push(MemoryRegion::Nvm(NvmRegion {
name: Some(format!("synthesized for {algo_name}")),
range: algo_range.clone(),
cores: if algo.cores.is_empty() {
chip.cores.iter().map(|core| core.name.clone()).collect()
} else {
algo.cores.clone()
},
is_alias: true,
access: Some(MemoryAccess {
read: false,
write: false,
execute: false,
boot: false,
}),
}));
}
flash_algorithms.push(algo);
}
let debug_sequence = crate::vendor::try_create_debug_sequence(chip).unwrap_or_else(|| {
// Default to the architecture of the first core, which is okay if
// there is no mixed architectures.
match chip.cores[0].core_type.architecture() {
Architecture::Arm => DebugSequence::Arm(DefaultArmSequence::create()),
Architecture::Riscv => DebugSequence::Riscv(DefaultRiscvSequence::create()),
Architecture::Xtensa => DebugSequence::Xtensa(DefaultXtensaSequence::create()),
}
});
tracing::info!("Using sequence {:?}", debug_sequence);
let rtt_scan_regions = match &chip.rtt_scan_ranges {
Some(ranges) => ScanRegion::Ranges(ranges.clone()),
None => ScanRegion::Ram, // By default we use all of the RAM ranges from the memory map.
};
Target {
name: chip.name.clone(),
cores: chip.cores.clone(),
flash_algorithms,
source: family.source.clone(),
memory_map,
debug_sequence,
rtt_scan_regions,
jtag: chip.jtag.clone(),
default_format: chip.default_binary_format.clone(),
}
}
/// Get the architecture of the target
pub fn architecture(&self) -> Architecture {
let target_arch = self.cores[0].core_type.architecture();
// This should be ensured when a `ChipFamily` is loaded.
assert!(
self.cores
.iter()
.map(|core| core.core_type.architecture())
.all(|core_arch| core_arch == target_arch),
"Not all cores of the target are of the same architecture. Probe-rs doesn't support this (yet). If you see this, it is a bug. Please file an issue."
);
target_arch
}
/// Return the default core of the target, usually the first core.
///
/// This core should be used for operations such as debug_unlock,
/// when nothing else is specified.
pub fn default_core(&self) -> &Core {
// TODO: Check if this is specified in the target description.
&self.cores[0]
}
/// Source description of this target.
pub fn source(&self) -> &TargetDescriptionSource {
&self.source
}
/// Create a [FlashLoader] for this target, which can be used
/// to program its non-volatile memory.
pub fn flash_loader(&self) -> FlashLoader {
FlashLoader::new(self.memory_map.clone(), self.source.clone())
}
/// Returns a [RawFlashAlgorithm] by name.
pub(crate) fn flash_algorithm_by_name(&self, name: &str) -> Option<&RawFlashAlgorithm> {
self.flash_algorithms.iter().find(|a| a.name == name)
}
/// Returns the core index from the core name
pub fn core_index_by_name(&self, name: &str) -> Option<usize> {
self.cores.iter().position(|c| c.name == name)
}
/// Returns the core index from the core name
pub fn core_index_by_address(&self, address: u64) -> Option<usize> {
let target_memory = self.memory_region_by_address(address)?;
let core_name = target_memory.cores().first()?;
self.core_index_by_name(core_name)
}
/// Returns the first found [MemoryRegion] that contains the given address
pub fn memory_region_by_address(&self, address: u64) -> Option<&MemoryRegion> {
self.memory_map
.iter()
.find(|region| region.contains(address))
}
}
/// Selector for the debug target.
#[derive(Debug, Clone)]
pub enum TargetSelector {
/// Specify the name of a target, which will
/// be used to search the internal list of
/// targets.
Unspecified(String),
/// Directly specify a target.
Specified(Target),
/// Try to automatically identify the target,
/// by reading identifying information from
/// the probe and / or target.
Auto,
}
impl From<&str> for TargetSelector {
fn from(value: &str) -> Self {
TargetSelector::Unspecified(value.into())
}
}
impl From<&String> for TargetSelector {
fn from(value: &String) -> Self {
TargetSelector::Unspecified(value.into())
}
}
impl From<String> for TargetSelector {
fn from(value: String) -> Self {
TargetSelector::Unspecified(value)
}
}
impl From<Option<&str>> for TargetSelector {
fn from(value: Option<&str>) -> Self {
match value {
Some(identifier) => identifier.into(),
None => TargetSelector::Auto,
}
}
}
impl From<()> for TargetSelector {
fn from(_value: ()) -> Self {
TargetSelector::Auto
}
}
impl From<Target> for TargetSelector {
fn from(target: Target) -> Self {
TargetSelector::Specified(target)
}
}
/// This is the type to denote a general debug sequence.
/// It can differentiate between ARM and RISC-V for now.
#[derive(Clone, Debug)]
pub enum DebugSequence {
/// An ARM debug sequence.
Arm(Arc<dyn ArmDebugSequence>),
/// A RISC-V debug sequence.
Riscv(Arc<dyn RiscvDebugSequence>),
/// An Xtensa debug sequence.
Xtensa(Arc<dyn XtensaDebugSequence>),
}
pub(crate) trait CoreExt {
// Retrieve the Coresight MemoryAP which should be used to
// access the core, if available.
fn memory_ap(&self) -> Option<FullyQualifiedApAddress>;
}
impl CoreExt for Core {
fn memory_ap(&self) -> Option<FullyQualifiedApAddress> {
match &self.core_access_options {
probe_rs_target::CoreAccessOptions::Arm(options) => {
Some(FullyQualifiedApAddress::v1_with_dp(
match options.psel {
0 => DpAddress::Default,
x => DpAddress::Multidrop(x),
},
options.ap,
))
}
probe_rs_target::CoreAccessOptions::Riscv(_) => None,
probe_rs_target::CoreAccessOptions::Xtensa(_) => None,
}
}
}