probe_rs/debug/variable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
use crate::debug::{language::ProgrammingLanguage, unit_info::UnitInfo};
use super::*;
use gimli::{DebugInfoOffset, DwLang, UnitOffset};
use itertools::Itertools;
use std::ops::Range;
/// Define the role that a variable plays in a Variant relationship. See section '5.7.10 Variant
/// Entries' of the DWARF 5 specification
#[derive(Debug, Clone, Eq, PartialEq, Default)]
pub enum VariantRole {
/// A (parent) Variable that can have any number of Variant's as its value
VariantPart(u64),
/// A (child) Variable that defines one of many possible types to hold the current value of a
/// VariantPart.
Variant(u64),
/// This variable doesn't play a role in a Variant relationship
#[default]
NonVariant,
}
/// A [Variable] will have either a valid value, or some reason why a value could not be constructed.
/// - If we encounter expected errors, they will be displayed to the user as defined below.
/// - If we encounter unexpected errors, they will be treated as proper errors and will propagated
/// to the calling process as an `Err()`
#[derive(Clone, Debug, PartialEq, Eq, Default)]
pub enum VariableValue {
/// A valid value of this variable
Valid(String),
/// Notify the user that we encountered a problem correctly resolving the variable.
/// - The variable will be visible to the user, as will the other field of the variable.
/// - The contained warning message will be displayed to the user.
/// - The debugger will not attempt to resolve additional fields or children of this variable.
Error(String),
/// The value has not been set. This could be because ...
/// - It is too early in the process to have discovered its value, or ...
/// - The variable cannot have a stored value, e.g. a `struct`. In this case, please use
/// `Variable::get_value` to infer a human readable value from the value of the struct's fields.
#[default]
Empty,
}
impl std::fmt::Display for VariableValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
VariableValue::Valid(value) => value.fmt(f),
VariableValue::Error(error) => write!(f, "< {error} >"),
VariableValue::Empty => write!(
f,
"Value not set. Please use Variable::get_value() to infer a human readable variable value"
),
}
}
}
impl VariableValue {
/// Returns `true` if the variable resolver did not encounter an error, `false` otherwise.
pub fn is_valid(&self) -> bool {
!matches!(self, VariableValue::Error(_))
}
/// Returns `true` if no value or error is present, `false` otherwise.
pub fn is_empty(&self) -> bool {
matches!(self, VariableValue::Empty)
}
}
/// The type of variable we have at hand.
#[derive(Debug, PartialEq, Eq, Clone, Default, Serialize)]
pub enum VariableName {
/// Top-level variable for static variables, child of a stack frame variable,
/// and holds all the static scoped variables which are directly visible to the
/// compile unit of the frame.
StaticScopeRoot,
/// Top-level variable for registers, child of a stack frame variable.
RegistersRoot,
/// Top-level variable for local scoped variables, child of a stack frame variable.
LocalScopeRoot,
/// Artificial variable, without a name (e.g. enum discriminant)
Artifical,
/// Anonymous namespace
AnonymousNamespace,
/// A Namespace with a specific name
Namespace(String),
/// Variable with a specific name
Named(String),
/// Entry of an array or similar
Indexed(u64),
/// Variable with an unknown name
#[default]
Unknown,
}
impl std::fmt::Display for VariableName {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
VariableName::StaticScopeRoot => write!(f, "Static Variable"),
VariableName::RegistersRoot => write!(f, "Platform Register"),
VariableName::LocalScopeRoot => write!(f, "Function Variable"),
VariableName::Artifical => write!(f, "<artifical>"),
VariableName::AnonymousNamespace => write!(f, "<anonymous_namespace>"),
VariableName::Namespace(name) => name.fmt(f),
VariableName::Named(name) => name.fmt(f),
VariableName::Indexed(index) => write!(f, "__{index}"),
VariableName::Unknown => write!(f, "<unknown>"),
}
}
}
/// Encode the nature of the Debug Information Entry in a way that we can resolve child nodes of a
/// [Variable].
///
/// The rules for 'lazy loading'/deferred recursion of [Variable] children are described under each
/// of the enum values.
#[derive(Debug, PartialEq, Eq, Clone, Default)]
pub enum VariableNodeType {
/// Use the `header_offset` and `type_offset` as direct references for recursing the variable
/// children. With the current implementation, the `type_offset` will point to a DIE with a tag
/// of `DW_TAG_structure_type`.
/// - Rule: For structured variables, we WILL NOT automatically expand their children, but we
/// have enough information to expand it on demand. Except if they fall into one of the
/// special cases handled by [VariableNodeType::RecurseToBaseType]
TypeOffset(DebugInfoOffset, UnitOffset),
/// Use the `header_offset` and `entries_offset` as direct references for recursing the variable
/// children.
/// - Rule: All top level variables in a [StackFrame] are automatically deferred, i.e
/// [VariableName::LocalScopeRoot], [VariableName::RegistersRoot].
DirectLookup(DebugInfoOffset, UnitOffset),
/// Look up information from all compilation units. This is used to resolve static variables, so
/// when [`VariableName::StaticScopeRoot`] is used.
UnitsLookup,
/// Sometimes it doesn't make sense to recurse the children of a specific node type
/// - Rule: Pointers to `unit` datatypes WILL NOT BE resolved, because it doesn't make sense.
/// - Rule: Once we determine that a variable can not be recursed further, we update the
/// variable_node_type to indicate that no further recursion is possible/required. This
/// can be because the variable is a 'base' data type, or because there was some kind of
/// error in processing the current node, so we don't want to incur cascading errors.
// TODO: Find code instances where we use magic values (e.g. u32::MAX) and replace with DoNotRecurse logic if appropriate.
DoNotRecurse,
/// Unless otherwise specified, always recurse the children of every node until we get to the
/// base data type.
/// - Rule: (Default) Unless it is prevented by any of the other rules, we always recurse the
/// children of these variables.
/// - Rule: Certain structured variables (e.g. `&str`, `Some`, `Ok`, `Err`, etc.) are set to
/// [VariableNodeType::RecurseToBaseType] to improve the debugger UX.
/// - Rule: Pointers to `const` variables WILL ALWAYS BE recursed, because they provide
/// essential information, for example about the length of strings, or the size of
/// arrays.
/// - Rule: Enumerated types WILL ALWAYS BE recursed, because we only ever want to see the
/// 'active' child as the value.
/// - Rule: For now, Array types WILL ALWAYS BE recursed. TODO: Evaluate if it is beneficial to
/// defer these.
/// - Rule: For now, Union types WILL ALWAYS BE recursed. TODO: Evaluate if it is beneficial to
/// defer these.
#[default]
RecurseToBaseType,
}
impl VariableNodeType {
/// Will return `true` if the `variable_node_type` value implies that the variable will be
/// 'lazy' resolved.
pub fn is_deferred(&self) -> bool {
match self {
VariableNodeType::TypeOffset(_, _)
| VariableNodeType::DirectLookup(_, _)
| VariableNodeType::UnitsLookup => true,
VariableNodeType::DoNotRecurse | VariableNodeType::RecurseToBaseType => false,
}
}
}
/// The starting bit (and direction) of a bit field type.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize)]
pub enum BitOffset {
/// The bit offset is from the least significant bit.
FromLsb(u64),
/// The bit offset is from the most significant bit.
FromMsb(u64),
}
/// Bitfield information for a variable.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize)]
pub struct Bitfield {
/// The starting bit (and direction) of a bit field type.
pub offset: BitOffset,
/// The length of the bit field.
pub length: u64,
}
impl Default for Bitfield {
fn default() -> Self {
Bitfield {
offset: BitOffset::FromLsb(0),
length: 0,
}
}
}
impl Bitfield {
/// Returns a Bitfield that has a FromLsb offset.
pub(crate) fn normalize(&self, byte_size: u64) -> Self {
let offset = self.offset(byte_size);
Bitfield {
offset: BitOffset::FromLsb(offset),
length: self.length,
}
}
pub(crate) fn offset(&self, byte_size: u64) -> u64 {
match self.offset {
BitOffset::FromLsb(offset) => offset,
BitOffset::FromMsb(offset) => byte_size * 8 - offset - self.length,
}
}
pub(crate) fn normalized_offset(&self) -> u64 {
match self.offset {
BitOffset::FromLsb(offset) => offset,
BitOffset::FromMsb(_) => unreachable!("Bitfield should have been normalized first"),
}
}
pub(crate) fn length(&self) -> u64 {
self.length
}
pub(crate) fn mask(&self) -> u128 {
(1 << self.length) - 1
}
pub(crate) fn extract(&self, value: u128) -> u128 {
let offset = self.normalized_offset();
let mask = self.mask();
(value >> offset) & mask
}
pub(crate) fn insert(&self, value: u128, new_value: u128) -> u128 {
let offset = self.normalized_offset();
let mask = self.mask();
let shifted_mask = mask << offset;
let new_value = (new_value & mask) << offset;
(value & !shifted_mask) | new_value
}
}
/// A modifier to a variable type. Currently only used to format the type name.
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub enum Modifier {
/// The type is declared as `volatile`.
Volatile,
/// The type is declared as `const`.
Const,
/// The type is declared as `restrict`.
Restrict,
/// The type is declared as `atomic`.
Atomic,
/// The type is an alias with the given name.
Typedef(String),
}
/// The variants of VariableType allows us to streamline the conditional logic that requires
/// specific handling depending on the nature of the variable.
#[derive(Debug, Clone, PartialEq, Eq, Default, Serialize)]
pub enum VariableType {
/// A variable with a Rust base datatype.
Base(String),
/// The variable is a range of bits in a wider (integer) type.
Bitfield(Bitfield, Box<VariableType>),
/// A Rust struct.
Struct(String),
/// A Rust enum.
Enum(String),
/// Namespace refers to the path that qualifies a variable. e.g. "std::string" is the namespace
/// for the struct "String"
Namespace,
/// A Pointer is a variable that contains a reference to another variable, and the type of the
/// referenced variable may not be known until the reference has been resolved.
Pointer(Option<String>),
/// A Rust array.
Array {
/// The type name of the variable.
item_type_name: Box<VariableType>,
/// The number of entries in the array.
count: usize,
},
/// A type alias.
Modified(Modifier, Box<VariableType>),
/// When we are unable to determine the name of a variable.
#[default]
Unknown,
/// For infrequently used categories of variables that does not fall into any of the other
/// `VariableType` variants.
Other(String),
}
impl VariableType {
/// Get the inner type of a modified type.
pub fn inner(&self) -> &Self {
if let Self::Modified(_, ty) = self {
ty.inner()
} else {
self
}
}
/// Get the inner type of a modified type, stopping at typedef aliases.
fn skip_modifiers(&self) -> &Self {
match self {
Self::Modified(Modifier::Typedef(_), _) => self,
Self::Modified(_, ty) => ty.skip_modifiers(),
_ => self,
}
}
/// Is this variable of a Rust PhantomData marker type?
pub fn is_phantom_data(&self) -> bool {
match self {
VariableType::Struct(name) => name.starts_with("PhantomData"),
_ => false,
}
}
/// Is this variable an array?
pub fn is_array(&self) -> bool {
matches!(self, VariableType::Array { .. })
}
/// Returns the string representation of the variable type's kind.
pub fn kind(&self) -> &str {
match self {
VariableType::Base(_) => "base",
VariableType::Bitfield(..) => "bitfield",
VariableType::Struct(_) => "struct",
VariableType::Enum(_) => "enum",
VariableType::Namespace => "namespace",
VariableType::Pointer(_) => "pointer",
VariableType::Array { .. } => "array",
VariableType::Unknown => "unknown",
VariableType::Other(_) => "other",
VariableType::Modified(_, inner) => inner.kind(),
}
}
pub(crate) fn display_name(&self, language: &dyn ProgrammingLanguage) -> String {
match self {
VariableType::Modified(Modifier::Typedef(name), _) => name.clone(),
VariableType::Modified(modifier, ty) => {
language.modified_type_name(modifier, &ty.display_name(language))
}
VariableType::Array {
item_type_name,
count,
} => language.format_array_type(
// In case the compiler points at a modified item type (e.g. const), skip the
// modifier.
&item_type_name.skip_modifiers().display_name(language),
*count,
),
VariableType::Bitfield(bitfield, name) => {
language.format_bitfield_type(&name.display_name(language), *bitfield)
}
_ => self.type_name(language),
}
}
/// Returns the type name after resolving aliases.
pub(crate) fn type_name(&self, language: &dyn ProgrammingLanguage) -> String {
let type_name = match self {
VariableType::Base(name)
| VariableType::Struct(name)
| VariableType::Enum(name)
| VariableType::Other(name) => Some(name.as_str()),
VariableType::Namespace => Some("namespace"),
VariableType::Unknown => None,
VariableType::Pointer(pointee) => {
// TODO: we should also carry the constness
return language.format_pointer_type(pointee.as_deref());
}
VariableType::Array {
item_type_name,
count,
} => return language.format_array_type(&item_type_name.type_name(language), *count),
VariableType::Bitfield(_, ty) | VariableType::Modified(_, ty) => {
return ty.type_name(language)
}
};
type_name.unwrap_or("<unknown>").to_string()
}
}
/// Location of a variable
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub enum VariableLocation {
/// Location of the variable is not known. This means that it has not been evaluated yet.
#[default]
Unknown,
/// The variable does not have a location currently, probably due to optimisations.
Unavailable,
/// The variable can be found in memory, at this address.
Address(u64),
/// The value of the variable is directly available.
Value,
/// There was an error evaluating the variable location.
Error(String),
/// Support for handling the location of this variable is not (yet) implemented.
Unsupported(String),
}
impl VariableLocation {
/// Return the memory address, if available. Otherwise an error is returned.
pub fn memory_address(&self) -> Result<u64, DebugError> {
match self {
VariableLocation::Address(address) => Ok(*address),
other => Err(DebugError::WarnAndContinue {
message: format!("Variable does not have a memory location: location={other:?}"),
}),
}
}
/// Check if the location is valid, ie. not an error, unsupported, or unavailable.
pub fn valid(&self) -> bool {
match self {
VariableLocation::Address(_) | VariableLocation::Value | VariableLocation::Unknown => {
true
}
_other => false,
}
}
}
impl std::fmt::Display for VariableLocation {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
VariableLocation::Unknown => "<unknown value>".fmt(f),
VariableLocation::Unavailable => "<value not available>".fmt(f),
VariableLocation::Address(address) => write!(f, "{address:#010X}"),
VariableLocation::Value => "<not applicable - statically stored value>".fmt(f),
VariableLocation::Error(error) => error.fmt(f),
VariableLocation::Unsupported(reason) => reason.fmt(f),
}
}
}
/// The `Variable` struct is used in conjunction with `VariableCache` to cache data about variables.
///
/// Any modifications to the `Variable` value will be transient (lost when it goes out of scope),
/// unless it is updated through one of the available methods on `VariableCache`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Variable {
/// Every variable must have a unique key value assigned to it.
/// The value will be zero until it is stored in VariableCache, at which time its value will be
/// set to the same as the VariableCache::variable_cache_key
pub(super) variable_key: ObjectRef,
/// Every variable must have a unique parent assigned to it when stored in the VariableCache.
pub parent_key: ObjectRef,
/// The variable name refers to the name of any of the types of values described in the [VariableCache]
pub name: VariableName,
/// Linkage name of the variable. Multiple variables with the same name could exist,
/// this is used to distinguish between them.
pub(crate) linkage_name: Option<String>,
/// Use `Variable::set_value()` and `Variable::get_value()` to correctly process this `value`
pub(super) value: VariableValue,
/// The source location of the declaration of this variable, if available.
pub source_location: Option<SourceLocation>,
/// Programming language of the defining compilation unit.
pub language: DwLang,
/// The name of the type of this variable.
pub type_name: VariableType,
/// For 'lazy loading' of certain variable types we have to determine if the variable recursion
/// should be deferred, and if so, how to resolve it when the request for further recursion
/// happens.
/// See [VariableNodeType] for more information.
pub variable_node_type: VariableNodeType,
/// The starting location/address in memory where this Variable's value is stored.
pub memory_location: VariableLocation,
/// The size of this variable in bytes.
pub byte_size: Option<u64>,
/// The role of this variable.
pub role: VariantRole,
}
impl Variable {
/// In most cases, Variables will be initialized with their ELF references so that we resolve
/// their data types and values on demand.
pub fn new(unit_info: Option<&UnitInfo>) -> Variable {
Variable {
language: unit_info
.map(|info| info.get_language())
.unwrap_or(gimli::DW_LANG_Rust),
variable_key: Default::default(),
parent_key: Default::default(),
name: Default::default(),
linkage_name: None,
value: Default::default(),
source_location: None,
type_name: Default::default(),
variable_node_type: Default::default(),
memory_location: Default::default(),
byte_size: None,
role: Default::default(),
}
}
/// Returns the readable name of the variable type.
pub fn type_name(&self) -> String {
self.type_name
.display_name(language::from_dwarf(self.language).as_ref())
}
/// Get a unique key for this variable.
pub fn variable_key(&self) -> ObjectRef {
self.variable_key
}
/// This ensures debug frontends can see the errors, but doesn't fail because of a single
/// variable not being able to decode correctly.
pub fn set_value(&mut self, new_value: VariableValue) {
// Allow some block when logic requires it.
if new_value.is_valid() || self.value.is_valid() {
// Simply overwrite existing value with a new valid one.
self.value = new_value;
} else {
// Concatenate the error messages ...
self.value = VariableValue::Error(format!("{} : {}", self.value, new_value));
// If the value is invalid, then make sure we don't propagate invalid memory location
// values.
self.memory_location =
VariableLocation::Error("Failed to resolve variable value".to_string());
}
}
/// Convert the [String] value into the appropriate memory format and update the target memory
/// with the new value.
/// Currently this only works for base data types. There is no provision in the MS DAP API to
/// catch this client side, so we can only respond with a 'gentle' error message if the user
/// attempts unsupported data types.
pub fn update_value(
&self,
memory: &mut impl MemoryInterface,
variable_cache: &mut VariableCache,
new_value: String,
) -> Result<(), DebugError> {
let valid_value = self.is_valid();
let valid_type = self.type_name != VariableType::Unknown;
let valid_memory = self.memory_location.valid();
if !valid_value || !valid_type || !valid_memory {
// Insufficient data available.
Err(DebugError::Other(format!(
"Cannot update variable: {:?}, with supplied information (value={:?}, type={:?}, memory location={:#010x?}).",
self.name, self.value, self.type_name, self.memory_location
)))
} else {
// We have everything we need to update the variable value.
language::from_dwarf(self.language)
.update_variable(self, memory, &new_value)
.map_err(|error| DebugError::WarnAndContinue {
message: format!("Invalid data value={new_value:?}: {error}"),
})?;
// Now update the cache with the new value for this variable.
let mut cache_variable = self.clone();
cache_variable.value = VariableValue::Valid(new_value);
cache_variable.extract_value(memory, variable_cache);
variable_cache.update_variable(&cache_variable)?;
Ok(())
}
}
/// Implementing get_value(), because Variable.value has to be private (a requirement of
/// updating the value without overriding earlier values ... see set_value()).
pub fn to_string(&self, variable_cache: &VariableCache) -> String {
// Allow for chained `if let` without complaining
if !self.value.is_empty() {
// The `value` for this `Variable` is non empty because either
// - It is base data type for which a value was determined based on the core runtime
// - We encountered an error somewhere, so report it to the user
return format!("{}", self.value);
}
if matches!(
self.name,
VariableName::AnonymousNamespace | VariableName::Namespace(_)
) {
// Namespaces do not have values
return String::new();
}
// We need to construct a 'human readable' value using `fmt::Display` to represent the
// values of complex types and pointers.
if variable_cache.has_children(self) {
self.formatted_variable_value(variable_cache, 0, false)
.unwrap_or_default()
} else if self.type_name == VariableType::Unknown || !self.memory_location.valid() {
if self.variable_node_type.is_deferred() {
// When we will do a lazy-load of variable children, and they have not yet been
// requested by the user, just display the type_name as the value
self.type_name
.display_name(language::from_dwarf(self.language).as_ref())
} else {
// This condition should only be true for intermediate nodes
// from DWARF. These should not show up in the final
// `VariableCache`. If a user sees this error, then there is
// a logic problem in the stack unwind
"Error: This is a bug! Attempted to evaluate a Variable with no type or no memory location".to_string()
}
} else if matches!(self.type_name, VariableType::Struct(ref name) if name == "None") {
"None".to_string()
} else if matches!(self.type_name, VariableType::Array { count: 0, .. }) {
self.formatted_variable_value(variable_cache, 0, false)
.unwrap_or_default()
} else {
format!(
"Unimplemented: Get value of type {:?} of ({:?} bytes) at location {}",
self.type_name, self.byte_size, self.memory_location
)
}
}
/// Evaluate the variable's result if possible and set self.value, or else set self.value as the error String.
pub fn extract_value(
&mut self,
memory: &mut dyn MemoryInterface,
variable_cache: &VariableCache,
) {
if let VariableValue::Error(_) = self.value {
// Nothing more to do ...
return;
}
let empty = self.value.is_empty();
// The value was set explicitly, so just leave it as is, or it was an error, so don't attempt
// anything else
let valid = self.memory_location.valid();
// This may just be that we are early on in the process of `Variable` evaluation
let unknown = self.type_name.inner() == &VariableType::Unknown;
if !empty || !valid || unknown {
return;
}
if self.variable_node_type.is_deferred()
|| matches!(self.type_name, VariableType::Pointer(_))
{
// And we have not previously assigned the value, then assign the type and address as
// the value.
self.value = VariableValue::Valid(format!(
"{} @ {}",
self.type_name
.display_name(language::from_dwarf(self.language).as_ref()),
self.memory_location
));
return;
}
tracing::trace!(
"Extracting value for {:?}, type={:?}",
self.name,
self.type_name
);
self.value =
language::from_dwarf(self.language).read_variable_value(self, memory, variable_cache);
}
/// The variable is considered to be an 'indexed' variable if the name starts with two
/// underscores followed by a number. e.g. "__1".
// TODO: Consider replacing this logic with `std::str::pattern::Pattern` when that API stabilizes
pub fn is_indexed(&self) -> bool {
match &self.name {
VariableName::Named(name) => {
name.starts_with("__")
&& name
.find(char::is_numeric)
.is_some_and(|zero_based_position| zero_based_position == 2)
}
// Other kind of variables are never indexed
_ => false,
}
}
/// Returns `true` if the variable has a name, `false` otherwise.
pub fn is_named(&self) -> bool {
matches!(&self.name, VariableName::Named(_))
}
/// `true` if the Variable has a valid value, or an empty value.
/// `false` if the Variable has a VariableValue::Error(_) value
pub fn is_valid(&self) -> bool {
self.value.is_valid()
}
/// Format the variable.
fn formatted_variable_value(
&self,
variable_cache: &VariableCache,
indentation: usize,
show_name: bool,
) -> Option<String> {
let type_name = self.type_name();
if !self.value.is_empty() {
// This is the end of the recursion where we already have a scalar
// value for a variable and we can just move it up.
let line_start = line_indent_string(indentation);
return Some(if show_name {
format!("{line_start}{}: {} = {}", self.name, type_name, self.value)
} else {
format!("{line_start}{}", self.value)
});
} else if matches!(
self.name,
VariableName::AnonymousNamespace | VariableName::Namespace(_)
) {
// Namespaces do not have values, so we report no value up.
// This will alow us to filter it out when we concatenate children.
return None;
}
// Infer a human readable value using the available children of this variable.
let children = &mut variable_cache.get_children(self.variable_key);
let first_child = children.clone().next();
// Make sure we can safely unwrap() children.
Some(match self.type_name.inner() {
VariableType::Pointer(_) => {
format_pointer_value(variable_cache, indentation, first_child)
}
VariableType::Array { .. } => {
format_array_value(variable_cache, indentation, children, &type_name)
}
VariableType::Struct(name) if name == "Some" || name == "Ok" || name == "Err" => {
format_struct_value(variable_cache, indentation, children, &type_name)
}
_ if first_child.is_none() => {
// This is a struct with no children, so just print the type name.
// This is for example the None value of an Option or the empty type ().
type_name
}
_ if matches!(
self.name,
VariableName::StaticScopeRoot
| VariableName::LocalScopeRoot
| VariableName::RegistersRoot
) =>
{
format_root_value(variable_cache, indentation, children, &type_name)
}
_ => format_default_value(
variable_cache,
indentation,
&self.name,
children,
&type_name,
show_name,
),
})
}
/// Calculate the memory range that contains the value of this variable.
///
/// If the location and/or byte size is not known, then return None.
/// Note: We don't do any validation of the memory range here and leave it
/// up to the caller to validate the memory ranges before attempting to read
/// them.
pub fn memory_range(&self) -> Option<Range<u64>> {
let VariableLocation::Address(address) = self.memory_location else {
return None;
};
self.byte_size.map(|byte_size| {
if byte_size == 0 {
address..address + 4
} else {
address..(address + byte_size)
}
})
}
}
/// Format a pointer value
///
/// Formats the pointed to value and potential subsequent children as well.
fn format_pointer_value(
variable_cache: &VariableCache,
indentation: usize,
first_child: Option<&Variable>,
) -> String {
let line_start = line_indent_string(indentation);
let value = if let Some(first_child) = first_child {
first_child
.formatted_variable_value(variable_cache, indentation + 1, true)
.expect("a child. This is a bug. Please report it.")
} else {
"Unable to resolve referenced variable value".to_string()
};
format!("{line_start}{value}")
}
/// Format any array like value.
///
/// Recursively formats all child values.
fn format_array_value<'a>(
variable_cache: &VariableCache,
indentation: usize,
children: &mut (impl Iterator<Item = &'a Variable> + Clone),
type_name: &str,
) -> String {
let line_start = line_indent_string(indentation);
// Limit arrays to 10 elements
const ARRAY_MAX_LENGTH: usize = 10;
// If we at least ARRAY_MAX_LENGTH + 2 items in the iterator, cap at ARRAY_MAX_LENGTH.
// If we have less, cap at the actual number of items.
// This helps us to never write "and 1 more" with the reasoning that the space used for this
// text, can be used for printing that one item.
let count = children.clone().count();
let take = if count > ARRAY_MAX_LENGTH + 1 {
ARRAY_MAX_LENGTH
} else {
count
};
let children_values = children
.by_ref()
.take(take)
.filter_map(|child| child.formatted_variable_value(variable_cache, indentation + 1, false))
.join(",");
let remainder = if count > ARRAY_MAX_LENGTH + 1 {
format!(",\n{line_start}\t... and {} more", count - take)
} else {
String::new()
};
format!("{line_start}{type_name} = [{children_values}{remainder}{line_start}]")
}
/// Format any struct like value .
///
/// Recursively formats all child values.
fn format_struct_value<'a>(
variable_cache: &VariableCache,
indentation: usize,
children: &mut (impl Iterator<Item = &'a Variable> + Clone),
type_name: &str,
) -> String {
let line_start = line_indent_string(indentation);
// FIXME: this is not hit by any of the unwind tests, which is weird because
// some of them contain `Some` structs.
// Handle special structure types like the variant values of `Option<>` and `Result<>`
let children_values = format_children_values(variable_cache, indentation, children, false);
format!("{line_start}{type_name} = ({children_values})")
}
/// Format any root value.
///
/// Recursively formats all child values.
fn format_root_value<'a>(
variable_cache: &VariableCache,
indentation: usize,
children: &mut (impl Iterator<Item = &'a Variable> + Clone),
type_name: &str,
) -> String {
let line_start = line_indent_string(indentation);
let children_values = format_children_values(variable_cache, indentation, children, true);
format!("{line_start}{type_name} {{{children_values}{line_start}}}")
}
/// Format any value that has no type that requires special handling.
///
/// Recursively formats all child values.
fn format_default_value<'a>(
variable_cache: &VariableCache,
indentation: usize,
name: &VariableName,
children: &mut (impl Iterator<Item = &'a Variable> + Clone),
type_name: &String,
show_name: bool,
) -> String {
let line_start = line_indent_string(indentation);
// Find the first child of the structure if it exists.
let child = children.clone().find(|v| v.is_named());
// If we do not have children, exit early because we cannot print more specifics (children)
// of this variable type. We instead print the empty type symbol.
let Some(child) = child else {
return "()".to_string();
};
let child_type_name = child.type_name();
if child.is_indexed() {
// Treat this structure as a tuple
let children_values = format_children_values(variable_cache, indentation, children, false);
let name = if show_name {
format!("{name}: {type_name}({child_type_name}) = ")
} else {
String::new()
};
format!("{line_start}{name}{type_name}({children_values}{line_start})")
} else {
// Treat this structure as a `struct`
let children_values = format_children_values(variable_cache, indentation, children, true);
let name = if show_name {
format!("{name}: {type_name} = ")
} else {
String::new()
};
format!("{line_start}{name}{type_name} {{{children_values}{line_start}}}")
}
}
/// Concatenate all children values with a comma.
fn format_children_values<'a>(
variable_cache: &VariableCache,
indentation: usize,
children: &mut (impl Iterator<Item = &'a Variable> + Clone),
show_name: bool,
) -> String {
children
.filter_map(|child| {
child.formatted_variable_value(variable_cache, indentation + 1, show_name)
})
.join(",")
}
/// Genarate a string that indents the line exactly the right amount.
/// Includes a newline at the start if the indentation is bigger than 0.
fn line_indent_string(indentation: usize) -> String {
let line_feed = if indentation == 0 { "" } else { "\n" };
format!("{line_feed}{:\t<indentation$}", "")
}