probe_rs/vendor/nxp/sequences/nxp_armv7m.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
//! Sequences for NXP chips that use ARMv7-M cores.
use std::{
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
thread,
time::{Duration, Instant},
};
use crate::{
architecture::arm::{
ap::{memory_ap::MemoryApType, AccessPortError, AccessPortType},
armv7m::{FpCtrl, FpRev2CompX},
core::{
armv7m::{Aircr, Dhcsr},
registers::cortex_m::PC,
},
memory::ArmMemoryInterface,
sequences::{ArmDebugSequence, ArmDebugSequenceError},
ArmError,
},
core::MemoryMappedRegister,
};
/// Debug sequences for MIMXRT10xx MCUs.
///
/// In its current form, it uses no custom debug sequences. Instead, it ensures a reliable
/// reset sequence.
///
/// # On custom reset catch
///
/// Some tools use a custom reset catch that looks at the program image, finds the
/// reset vector, then places a breakpoint on that reset vector. This implementation
/// isn't doing that. That would be necessary if we don't control the kind of reset
/// that's happening. Since we're definitely using a SYSRESETREQ, we can rely on the
/// normal reset catch.
///
/// If the design changes such that the kind of reset isn't in our control, we'll
/// need to handle those cases.
#[derive(Debug)]
pub struct MIMXRT10xx(());
impl MIMXRT10xx {
/// Create a sequence handle for the MIMXRT10xx.
pub fn create() -> Arc<dyn ArmDebugSequence> {
Arc::new(Self(()))
}
/// Runtime validation of core type.
fn check_core_type(&self, core_type: crate::CoreType) -> Result<(), ArmError> {
const EXPECTED: crate::CoreType = crate::CoreType::Armv7em;
if core_type != EXPECTED {
tracing::warn!(
"MIMXRT10xx core type supplied as {core_type:?}, but the actual core is a {EXPECTED:?}"
);
// Not an issue right now. Warning because it's curious.
}
Ok(())
}
/// Use the boot fuse configuration for FlexRAM.
///
/// If the user changed the FlexRAM configuration in software, this will undo
/// that configuration, preferring the system's POR FlexRAM state.
fn use_boot_fuses_for_flexram(
&self,
probe: &mut dyn ArmMemoryInterface,
) -> Result<(), ArmError> {
const IOMUXC_GPR_GPR16: u64 = 0x400A_C040;
const FLEXRAM_BANK_CFG_SEL_MASK: u32 = 1 << 2;
let mut gpr16 = probe.read_word_32(IOMUXC_GPR_GPR16)?;
gpr16 &= !FLEXRAM_BANK_CFG_SEL_MASK;
probe.write_word_32(IOMUXC_GPR_GPR16, gpr16)?;
probe.flush()?;
Ok(())
}
}
impl ArmDebugSequence for MIMXRT10xx {
fn reset_system(
&self,
interface: &mut dyn ArmMemoryInterface,
core_type: crate::CoreType,
_: Option<u64>,
) -> Result<(), ArmError> {
self.check_core_type(core_type)?;
// OK to perform before the reset, since the configuration
// persists beyond the reset.
self.use_boot_fuses_for_flexram(interface)?;
let mut aircr = Aircr(0);
aircr.vectkey();
aircr.set_sysresetreq(true);
// Reset happens very quickly, and takes a bit. Ignore write and flush
// errors that will occur due to the reset reaction.
interface
.write_word_32(Aircr::get_mmio_address(), aircr.into())
.ok();
interface.flush().ok();
// Wait for the reset to finish...
thread::sleep(Duration::from_millis(100));
let start = Instant::now();
loop {
let dhcsr = match interface.read_word_32(Dhcsr::get_mmio_address()) {
Ok(val) => Dhcsr(val),
Err(ArmError::AccessPort {
source:
AccessPortError::RegisterRead { .. } | AccessPortError::RegisterWrite { .. },
..
}) => {
// Some combinations of debug probe and target (in
// particular, hs-probe and ATSAMD21) result in
// register read errors while the target is
// resetting.
//
// See here for more info: https://github.com/probe-rs/probe-rs/pull/1174#issuecomment-1275568493
continue;
}
Err(err) => return Err(err),
};
if !dhcsr.s_reset_st() {
return Ok(());
}
if start.elapsed() >= Duration::from_millis(500) {
return Err(ArmError::Timeout);
}
}
}
}
/// Debug sequences for MIMXRT117x MCUs.
///
/// Currently only supports the Cortex M7. In fact, if you try to interact with the Cortex M4,
/// you'll have a bad time: its access port doesn't appear until it's released from reset!
/// For the time being, you can only do things through the CM7.
#[derive(Debug)]
pub struct MIMXRT117x {
/// Given the reset we're performing, we won't be able to perform
/// a normal vector catch. (The boot ROM doesn't care about us.)
/// We'll simulate that behavior for the user.
simulate_reset_catch: AtomicBool,
}
impl MIMXRT117x {
/// System reset controller base address.
const SRC: u64 = 0x40C0_4000;
/// SRC reset mode register.
const SRC_SRMR: u64 = Self::SRC + 4;
fn new() -> Self {
Self {
simulate_reset_catch: AtomicBool::new(false),
}
}
/// Create a sequence handle for the MIMXRT117x.
pub fn create() -> Arc<dyn ArmDebugSequence> {
Arc::new(Self::new())
}
/// To ensure we affect a system reset, clear the mask that would prevent
/// a response to the CM7's SYSRESETREQ.
fn clear_src_srmr_mask(&self, probe: &mut dyn ArmMemoryInterface) -> Result<(), ArmError> {
let mut srmr = probe.read_word_32(Self::SRC_SRMR)?;
tracing::debug!("SRC_SRMR: {srmr:#010X}. Clearing the M7REQ_RESET_MODE mask...");
srmr &= !(0b11 << 12);
probe.write_word_32(Self::SRC_SRMR, srmr)?;
probe.flush()?;
Ok(())
}
/// Halt or unhalt the core.
fn halt(&self, probe: &mut dyn ArmMemoryInterface, halt: bool) -> Result<(), ArmError> {
let mut dhcsr = Dhcsr(probe.read_word_32(Dhcsr::get_mmio_address())?);
dhcsr.set_c_halt(halt);
dhcsr.set_c_debugen(true);
dhcsr.enable_write();
probe.write_word_32(Dhcsr::get_mmio_address(), dhcsr.into())?;
probe.flush()?;
let start = Instant::now();
let action = if halt { "halt" } else { "unhalt" };
while Dhcsr(probe.read_word_32(Dhcsr::get_mmio_address())?).s_halt() != halt {
if start.elapsed() > Duration::from_millis(100) {
tracing::debug!("Exceeded timeout while waiting for the core to {action}");
return Err(ArmError::Timeout);
}
thread::sleep(Duration::from_millis(1));
}
Ok(())
}
/// Poll the AP's status until it can accept transfers.
fn wait_for_enable(
&self,
probe: &mut dyn ArmMemoryInterface,
timeout: Duration,
) -> Result<(), ArmError> {
let start = Instant::now();
let mut errors = 0usize;
let mut disables = 0usize;
let (interface, memory_ap) = probe.try_as_parts()?;
loop {
match memory_ap.generic_status(interface) {
Ok(csw) if csw.DeviceEn => {
tracing::debug!("Device enabled after {}ms with {errors} errors and {disables} invalid statuses", start.elapsed().as_millis());
return Ok(());
}
Ok(_) => disables += 1,
Err(_) => errors += 1,
}
if start.elapsed() > timeout {
tracing::debug!("Exceeded {}ms timeout while waiting for enable with {errors} errors and {disables} invalid statuses", timeout.as_millis());
return Err(ArmError::Timeout);
}
thread::sleep(Duration::from_millis(1));
}
}
/// Assumes that the core is halted.
fn read_core_reg(
&self,
probe: &mut dyn ArmMemoryInterface,
reg: crate::core::registers::CoreRegister,
) -> Result<u32, ArmError> {
crate::architecture::arm::core::cortex_m::read_core_reg(probe, reg.into())
}
/// Assumes that the core is halted.
fn write_core_reg(
&self,
probe: &mut dyn ArmMemoryInterface,
reg: crate::core::registers::CoreRegister,
value: u32,
) -> Result<(), ArmError> {
crate::architecture::arm::core::cortex_m::write_core_reg(probe, reg.into(), value)?;
probe.flush()?;
Ok(())
}
/// Ensure that the program counter's contents match `expected`.
///
/// Assumes that the core is halted.
fn check_pc(
&self,
probe: &mut dyn ArmMemoryInterface,
expected: u32,
) -> Result<(), ArmDebugSequenceError> {
let pc = self
.read_core_reg(probe, PC)
.map_err(|err| ArmDebugSequenceError::SequenceSpecific(err.into()))?;
if pc != expected {
let err = format!("The MIMXRT1170's Cortex M7 should be at address {expected:#010X} but it's at {pc:#010X}");
return Err(ArmDebugSequenceError::SequenceSpecific(err.into()));
}
Ok(())
}
/// When the boot ROM detects a reset due to SYSRESETREQ, it spins
/// at this location. It appears that this spinning location is after
/// the boot ROM has done its useful work (like turn on clocks, prepare
/// FlexSPI configuration blocks), but before it jumps into the program.
const BOOT_ROM_SPIN_ADDRESS: u32 = 0x00223104;
/// Returns the reset handler address contained in the NVM program image.
///
/// We might not find that reset handler. In that case, return `None`.
fn find_flexspi_image_reset_handler(
&self,
probe: &mut dyn ArmMemoryInterface,
) -> Result<Option<u32>, ArmError> {
/// Assumed by today's in-tree target definition.
const FLEXSPI1: u64 = 0x30000000;
/// A well-formed FlexSPI program has its image vector table at this offset in flash.
const IVT: u64 = FLEXSPI1 + 0x1000;
tracing::debug!("Assuming that your CM7's program is in FlexSPI1 at {FLEXSPI1:#010X}");
// Make sure the IVT header looks reasonable.
//
// See 10.7.1.1 Image vector table structure in the 1170 RM (Rev 2).
// If it doesn't look reasonable, we assume that FlexSPI is inaccessible.
let ivt_header = probe.read_word_32(IVT)?;
tracing::debug!("IVT Header: {ivt_header:#010X}");
if ivt_header & 0xFF != 0xD1 {
tracing::debug!("IVT tag is incorrect! Expected 0xD1 in {ivt_header:#010X}");
return Ok(None);
}
if (ivt_header >> 8) & 0xFFFF != 0x2000 {
tracing::debug!("IVT length is incorrect! {ivt_header:#010X}");
return Ok(None);
}
let ivt_version = ivt_header >> 24;
if !(0x40..=0x45).contains(&ivt_version) {
tracing::debug!("IVT version is invalid! {ivt_header:#010X}");
return Ok(None);
}
// IVT versions 4.0 (0x40) are documented as containing the "entry point."
// But in practice, this seems to be the pointer to the vector table. IVT
// versions 4.1 and 4.3 (0x41, 0x43) appear to truly use the reset handler, not
// the vector table. I can't find any documentation on this, so this comes from
// some local testing. We assume that 4.0 is the outlier, and that all versions
// above it use the same approach.
let reset_handler = if ivt_version == 0x40 {
// The address of the vector table is immediately behind the IVT header.
let vector_table = probe.read_word_32(IVT + 4)?;
tracing::debug!("Vector table address: {vector_table:#010X}");
// The vector table starts with the stack pointer. Then the
// reset handle is immediately behind that.
probe.read_word_32(u64::from(vector_table) + 4u64)?
} else {
// The reset handler immediately follows the IVT header.
probe.read_word_32(IVT + 4)?
};
tracing::debug!("Reset handler: {reset_handler:#010X}");
if reset_handler & 1 == 0 {
tracing::debug!(
"Is your reset handler actually a function address? Where's its thumb bit?"
);
return Ok(None);
}
Ok(Some(reset_handler))
}
/// See documentation for [`MIMXRT10xx::use_boot_fuses_for_flexram`].
fn use_boot_fuses_for_flexram(
&self,
probe: &mut dyn ArmMemoryInterface,
) -> Result<(), ArmError> {
const IOMUXC_GPR_GPR16: u64 = 0x400E_4040;
const FLEXRAM_BANK_CFG_SEL_MASK: u32 = 1 << 2;
let mut gpr16 = probe.read_word_32(IOMUXC_GPR_GPR16)?;
gpr16 &= !FLEXRAM_BANK_CFG_SEL_MASK;
probe.write_word_32(IOMUXC_GPR_GPR16, gpr16)?;
probe.flush()?;
Ok(())
}
}
impl ArmDebugSequence for MIMXRT117x {
fn reset_catch_set(
&self,
_: &mut dyn ArmMemoryInterface,
_: probe_rs_target::CoreType,
_: Option<u64>,
) -> Result<(), ArmError> {
self.simulate_reset_catch.store(true, Ordering::Relaxed);
Ok(())
}
fn reset_catch_clear(
&self,
_: &mut dyn ArmMemoryInterface,
_: probe_rs_target::CoreType,
_: Option<u64>,
) -> Result<(), ArmError> {
self.simulate_reset_catch.store(false, Ordering::Relaxed);
Ok(())
}
fn reset_system(
&self,
probe: &mut dyn ArmMemoryInterface,
core_type: probe_rs_target::CoreType,
debug_base: Option<u64>,
) -> Result<(), ArmError> {
// OK to perform before the reset, since the configuration
// persists beyond the reset.
self.use_boot_fuses_for_flexram(probe)?;
// Cache debug system state that may be lost across the reset.
let debug_cache = DebugCache::from_target(probe)?;
// Make sure that the CM7's SYSRESETREQ isn't ignored by the system
// reset controller.
self.clear_src_srmr_mask(probe)?;
// Affect a SYSRESETREQ throught the CM7 to reset the entire system.
//
// For more information on the SYSRESETREQ response, consult the system
// reset controller (SRC) section of the reference manual. This is a
// convenient way to perform a whole-system reset.
//
// Another approach to perform this reset: iterate through all SRC slice controls,
// and manually reset them. That should be close to SYSRESETREQ. However, it seems
// that there are no slice controls for CM4MEM (LMEM) and CM7MEM (FlexRAM)
// so you might not be able to affect a reset on those two domains.
//
// If you scan through the slices, you'll notice that the M7CORE and M7DEBUG are
// different slices. You'll think "I can perform a reset through the SRC that hits
// all slices except the M*DEBUG slices. This would preserve debugging and I won't
// have to re-initialize the debug port!" I could not get that to work; if I did a
// reset through SRC_CTRL_M7CORE, I found that I still needed to re-initialize the
// debug port after the reset. Maybe I did something wrong.
//
// We're about to lose the debug port! We're ignoring missed or incorrect responses.
let mut aircr = Aircr(0);
aircr.vectkey();
aircr.set_sysresetreq(true);
probe
.write_word_32(Aircr::get_mmio_address(), aircr.into())
.ok();
probe.flush().ok();
// If all goes well, we lost the debug port. Thanks, boot ROM. Let's bring it back.
//
// The ARM communication interface knows how to re-initialize the debug port.
// Re-initializing the core(s) is on us.
let ap = probe.ap().ap_address().clone();
let interface = probe.get_arm_communication_interface()?;
interface.reinitialize()?;
assert!(debug_base.is_none());
self.debug_core_start(interface, &ap, core_type, None, None)?;
// Are we back?
self.wait_for_enable(probe, Duration::from_millis(300))?;
// We're back. Halt the core so we can establish the reset context.
self.halt(probe, true)?;
// When we reset into the boot ROM, it checks why we reset. If the boot ROM observes that
// we reset due to SYSRESETREQ, it spins at a known address. Are we spinning there?
self.check_pc(probe, Self::BOOT_ROM_SPIN_ADDRESS)?;
// Why does the boot ROM spin? It wants us to set up the reset context! (And it wanted
// to give us a chance to re-establish debugging after it took it away from us.)
//
// We assume that the user wants reset into the program they store within FlexSPI. We
// emulate the behaviors of the boot ROM here: find the reset handler, and prepare the
// CM7 to run that reset handler. It's convenient that the boot ROM prepares the FlexSPI
// controller...
//
// But that's not always true: if you change your boot fuses, your board's boot pins, etc.
// then the boot ROM respects that configuration. It might not initialize the FlexSPI
// controller, and we won't be able to find the reset handler. We're not sure what to do
// here, so we'll keep the CM7 in the boot ROM.
//
// (A generous tool might inspect the boot fuses to figure out what the next step would
// be. Maybe it could invoke more boot ROM APIs to put us into the next stage. Sorry,
// we're not yet a generous tool.)
if let Some(pc) = self.find_flexspi_image_reset_handler(probe)? {
self.write_core_reg(probe, PC, pc)?
} else {
tracing::warn!(
"Could not find a valid reset handler in FlexSPI! Keeping the CM7 in the boot ROM."
);
}
debug_cache.restore(probe)?;
// We're halted in order to establish the reset context. Did the user want us to stay halted?
if !self.simulate_reset_catch.load(Ordering::Relaxed) {
self.halt(probe, false)?;
}
Ok(())
}
}
/// Cache the debug state of the MCU.
///
/// Some targets will lose this state once they execute a system reset. For
/// targets that know this will happen, we can restore the context after
/// the reset occurs.
///
/// There's probably more we could cache, but this is a good enough starting
/// point for 1170 testing.
///
/// The FPB assumes the v2 architecture revision, and it only cares about
/// control and comparator registers. (No caching of any CoreSight IDs.)
/// A portable implementation may need to specialize this for the FPB revision
/// of the chip.
struct DebugCache {
fp_ctrl: FpCtrl,
fp_comps: Vec<FpRev2CompX>,
}
impl DebugCache {
/// Produce a debug cache from the target.
fn from_target(probe: &mut dyn ArmMemoryInterface) -> Result<Self, ArmError> {
let fp_ctrl = FpCtrl(probe.read_word_32(FpCtrl::get_mmio_address())?);
Ok(Self {
fp_ctrl,
fp_comps: (0..fp_ctrl.num_code())
.map(|base_address| -> Result<FpRev2CompX, ArmError> {
let address = FpRev2CompX::get_mmio_address_from_base(base_address as u64 * 4)?;
let fp_comp = probe.read_word_32(address)?;
Ok(FpRev2CompX(fp_comp))
})
.collect::<Result<Vec<_>, _>>()?,
})
}
/// Put this cached debug state back into the target.
fn restore(mut self, probe: &mut dyn ArmMemoryInterface) -> Result<(), ArmError> {
self.fp_ctrl.set_key(true);
probe.write_word_32(FpCtrl::get_mmio_address(), self.fp_ctrl.into())?;
for (base, fp_comp) in self.fp_comps.into_iter().enumerate() {
probe.write_word_32(
FpRev2CompX::get_mmio_address_from_base(base as u64 * 4)?,
fp_comp.into(),
)?;
}
Ok(())
}
}